Verification of Ensemble Probability of Precipitation Forecasts

Project No.1

Tirivanhu Muhwati (Zimbabwe) Petra Roiha (Finland) Flora Gofa (Greece)

4th International Verification Methods Tutorial HELSINKI, FINLAND JUNE 2009

DATASET AND MAIN AIM

- Dataset of precipitation accumulation observations for one location in Greece accompanied by the corresponding COSMO-LEPS 16 member ensemble forecast.
- Main Aim to evaluate the probability of precipitation forecasts generated from the ensemble.

DATA SPECIFICATION

Forecasted 20 day values for a single station (16741 - Athens Airport) for October 2007.

- Forecast period of 72hrs.
- Weather parameter examined: 24hr precipitation.
- Rainfall amounts were very little as a result the use of a rain or no rain predictant.

<u>System setup:</u> ic and bc: multimodel approach

P1: conv. scheme
(Tke)
P2: conv. scheme (KF)
P3: turb. Parameter 1
P4: turb. parameter 2

16 COSMO runs 10 km hor. res. 40 vertical

Brier Skill Score

BSS measures the improvement of the probabilistic forecast relative to the sample climatology.

 $BSS = \frac{\text{resolution} - \text{reliability}}{2}$

uncertainty

Brier Score : Scalar summary measure for the assessment of the probabilistic forecast performance, mean-squared error of the probability forecast

Statistical Properties

	DAY1	DAY2	DAY3
BS	0,098	0,22	0,168
BSS	0,57	0,077	0,33
BS_resol	0,194	0,143	0,166
BS_reliab	0,064	0,124	0,034
BS_acc	0,227	0,247	0,248

Perfect Brier Score = 0 Day 1 exhibits the best results Perfect Brier Skill Score = 1 Day 1 exhibits the best results.

Sample Statistics

ROC Area Plots

ROC measures the ability of the forecast to discriminate between two alternative outcomes.

ROC area day1=0.838 day2=0.798 day3=0.851 The forecast has skill Least skill for day 2

Reliability Diagrams

- A graphical method for assessing reliability, resolution, and sharpness of a probability forecast
- Sometimes called "attributes" diagram.

Reliability Diagrams

Incomplete reliability plots for forecast days 1, 2 and 3 suggesting too small a sample size

Need to aggregate the data to provide larger data set

- Very Short Range
 00h-36h
- Short Range
 42h-72h

Very short range and short range – BS, BSS and ROC VS S DAY1 DAY2 DAY3 BS 0,098 0,22 0,168 0,094 BS 0,124 BSS 0,077 0,57 0,33 BSS 0,14 0,071 BS resol 0,194 0,143 0,166 BS resol 0,039 0,038 BS_reliab 0,064 0,124 0,034 BS reliab 0,024 0,0282 0,247 0,248 BS_acc 0.227 0,133 BS acc 0,11 **ROC Short Range ROC Very Short Range** 2 8.0 8.0 0.6 0.6 hit rate hit rate 0.50.4 0.2 0.3 0.4 4.0 0.6 - Model A 0.734 (0.707) - Model A 0.787 (0.779) 0.7 0098 0.2 0.2 ROC=0.78 ROC=0.70 0.0 0.0

0.0

0.2

0.4

0.6

false alarm rate

0.8

1.0

0.0

0.2

0.4

0.6

false alarm rate

0.8

1.0

Very short range and short range - reliability

CONCLUSIONS

 Reliability diagram computation requires a fairly large dataset, because of the need to partition the sample into subsamples conditional on forecast probability.

- ROC scores better for the first unaggregated data sample with the BS showing otherwise.
- Although the scores showed some level of skill, it is not possible to come up with concrete conclusions

Thank You