

Verifying "Extreme Rainfall Alerts" for surface water flooding potential

Marion Mittermaier, Nigel Roberts and Clive Pierce

© Crown copyright 2009 Met Office

Pluvial (surface water) flooding

Why "Extreme Rainfall Alerts" ?

Met Office

- Much of the damage in the July 2007 UK floods was caused by surface water flooding. The Environment Agency and the Met Office are working together to improve understanding and response to this flood risk.
- Surface water flooding occurs as a direct result of extreme rainfall. It differs from river flooding as it can happen before water enters a river or watercourse or where no river or watercourse exists.
- Advance warning is difficult as it can happen very quickly when the level of rainfall exceeds drainage capacity. Its impact is highly dependent on local landscapes and local conditions such as blocked culverts.

What are			Extreme rai	Agency Agency Agency Agency EARLY ALER				
Mot Office		hey?)	An Alert for the following Suffolk Norfolk	regions:	₽ ⁴		
Meton	CC	 Base gene can b Alerts Can 	ed on sophisticate rate first-guess p be forecaster-mo s are issued at th be updated or ca	ed algorithms to probabilities whi dified ne county scale. incelled.	ch			
		Evte	ama Dainfall Al	orto		The second se		
	Extreme Rainfall Al			erts		. Low the		
	Adv	isory	Early	Imminent	1 Office at 40:44 la	and time on Sunday, 24 August 2000		
30 mm/h or 40 mm/3h or 50 mm/6h	Very low but prob >= 10%		Low with prob 20-40%	Moderate with prob >= 40%	ERA reference number: 20 Early Alert 15:00 local time on Sunday, 31 August 2008 23:00 local time on Sunday, 31 August 2008 s of over 30 millimetres in 1 hours are expected accumulations of 50 millimetres are possible			
Issued © Crown copyrig	14LT v the startin the mid	valid for 24h og from next night	Lead time of 8 – 11h	Lead time of 1-3h	infall may lead activating you please contact th 200 5050, Email: er e National Severe V jov.uk for river and	to surface water flooding r emergency procedures e Met Office Customer Centre nquiries@metoffice.gov.uk Weather Warning Service sea flood warnings		

Difference between the National Severe Weather Warnings and Extreme Rainfall Alerts?

- NSWWS warnings are not designed to warn for surface water flooding. ERA thresholds are specifically set to relate to the risk of surface water flooding (based on 30 mm rainfall per hour in urban areas);
- Because rainfall thresholds leading to surface water flooding are higher and there is more uncertainty in forecasting rainfall quantities of high intensities, the probabilities assigned to the ERA thresholds will be necessarily low compared to NSWWS;
- ERAs will be updated on regular basis, the NSWWS Heavy Rainfall Warning is only issued once. (Note: talks by <u>Michael Sharpe, Clive Wilson and David Stephenson on</u> <u>verification of conventional warnings).</u>

So how to verify these alerts?! Comparing two options...

© Crown copyright 2009 Met Office

Two approaches have been considered ...

• taking the "event" view, and

(did an event occur anywhere in the alert area during the time that the alert was in force)

• taking the "time series" (continuum) view

(comparing the county accumulation totals hour-byhour during the time that the alert was in force to establish if the threshold was exceeded)

Caveat: both of these approaches are inherently deterministic

Taking the "event" view

© Crown copyright 2009 Met Office

Defining an event

Events are defined as an occurrence of one of the ERA thresholds being exceeded, and whether or not there was an alert (i.e. it is not conditioned on just alerts or events)

Events have been split into two types:

- An event it is extremely likely that an ERA threshold was exceeded.
- A 'possible' event it is distinctly possible that an ERA threshold was exceeded but there is insufficient evidence to class as an event (or no event).

The distinction between events and possible events was necessary due to the uncertainties in radar estimates (especially on a coarse 5km grid).

Sometimes there were **several events** (for different geographical areas) or perhaps **several warnings** given (for different geographical areas) on the same day.

Events contingency table

Based on the pilot data for July-August 2008

Contingency table for:						
Advisories Early Imminent		Yes event occurred (possible events excluded)	Yes event occurred (possible events included)	No event occurred (possible events included as no)	No event occurred (possible events not included as no)	Total
Forecast	Advisory	a = 4	a' = 7	b = 12	b' = 9	16
	Early issued	a = 6	a' = 10	b = 13	b' = 9	19
	Imminent	a = 5	a' = 6	b = 4	b' = 3	9
	No advisory	c = 16	c' = 38	Can't be determined	Can't be determined	Can't be determined
	No early issued	c = 14	c' = 35	with this framework	with this framework	with this framework
	No imminent	c = 15	c' = 39			
Total		20	45'	Can't be determined with this framework	Can't be determined with this framework	Can't be determined with this framework

© Crown copyright 2009 Met Office

^{4th WMO</sub>, The "missing d's" _{ine 2009}}

Events categorical statistics

Green=encouraging; red=cause for concern

Met Office

Туре	Hit rate (H)	Hit rate (H')	False Alarm Ratio (FAR)	False Alarm Ratio (FAR')	1-FAR	1-FAR'	CSI	CSI'
Advisory	0.2	0.16	0.75	0.56	0.25	0.44	0.13	0.13
Early	0.3	0.22	0.68	0.47	0.32	0.53	0.18	0.19
Imminent	0.25	0.13	0.44	0.33	0.56	0.67	0.21	0.13

H = # events for which alert was issued

H' = # events and possible events for which an alert was issued

FAR = # alerts for which there was no event

FAR' = # alerts for which there was no event or possible event

(1-FAR) = proportion of alerts (excluding possible events) that were correct

(1-FAR') = proportion of alerts (including possible events) that were correct

CSI = # occasions when either an alert was issued or an event occurred and forecast was correct

CSI' = # occasions when either an alert was issued or an event or possible event occurred and forecast was correct

... based on the fact that advisories are issued on the basis of a **10% chance** then we can consider the following ideal situation:

b = a * 9 because 9 / 10 times nothing should happen, i.e. b should be 9 x greater than a;

c ~ 0 because in an ideal situation we should not miss any events, i.e. all events are warned for;

then CSI \sim a / (a + 9 * a) \sim 0.1

Therefore the value of **0.13 is in keeping with expectation** (given the 10% probability) and not as a bad a score as the deterministic framework would suggest (although the balance of a, b and c may not be as it should be).

Taking the time series view

© Crown copyright 2009 Met Office

Using a "unit" of time

Met Office

- Max accumulations per county were extracted from the 2-km radar running hourly, three hourly and six-hourly accumulations
- Results are calculated at the **county scale**.
- A precise matching in both space and time was applied.
- A 3 x 2 contingency table is compiled using two thresholds, T1 (lesser) and T2. The T1 threshold is used to differentiate between *hits* and *near hits*, *close misses* and *misses*.

The <u>criteria</u> can be summarised as follows:

Hit = *rainfall* accumulation >= T2 and alert issued

Near hit = rainfall accumulation >= T1 but < T2 and alert issued

Close miss = rainfall accumulation >= T1 but < T2 with no alert issued

Miss = rainfall accumulation >= T2 but no alert issued

False alarm = rainfall accumulation < T1 but alert issued

Correct non-event = rainfall accumulation < T1 and no alert issued

© Crown copyright 2009 Met Office

Observations "uncertainty"

The <u>two-tier thresholds</u> enable the introduction of "uncertainty" to the analysis.

	Hourly	Three hourly	Six hourly
T1	20 mm/h	30 mm/3h	40 mm/6h
T2 (for which the alert is issued)	30 mm/h	40 mm/3h	50 mm/6h

The T2 threshold could have been exceeded ...

An event could have occurred with a lesser accumulation ...

© Crown copyright 2009 Met Office

 For hit rate: advisory > early > imminent

- For proportion correct and log-odds ratio: imminent > early > advisory
- Larger accumulations seem to score marginally better
- <u>Scores are lower</u> than for the eventbased analysis but <u>trends the same</u>

© Crown copyright 2009 Met Office

General conclusions

Met Office

- The two approaches provide broadly similar results:
 - e.g. in agreement that **too few advisories and alerts** were being issued; **forecasters are too conservative** (worrying about false alarms)
 - There are also **some notable differences**:
 - the more detailed analysis suggests many more events missed; but also higher false alarms;
 - the scores for the time series analysis are much lower
 - Neither of the methodologies is ideal:
 - too deterministic (whilst they are actually probabilities, warnings should be probabilistic)
 - precise matching in space and time, no credit given for "close" forecasts
 - either incomplete contingency tables (those missing d's) or an overwhelming number of non-events

General conclusions 2

The answer probably lies in using:

- greater spatial uncertainty and/or eliminating the trivial non-events
- changing the way we define the unit of comparison
- e.g. presentations by Michael Sharpe illustrating our new warnings verification framework and David Stephenson's talk
- We have not attempted to address how we would routinely (and objectively) verify the occurrence of surface water flooding in conjunction with the rainfall thresholds having been exceeded:
 - this is very difficult and thus far has been very subjective, based on anecdotal evidence from the public;
 - in the end the occurrence of surface water flooding is not absolutely tied to the rainfall exceedance thresholds (but also dependent on local conditions) which is why an element of uncertainty must form part of the verification strategy.

Questions and answers

© Crown copyright 2009 Met Office