
Chapter 4

Scattering

The previous chapter dealt with fields due to charge and current distribu-
tions in an otherwise empty space. Now we will turn to a more general
situation with some material under the influence of electromagnetic fields.
We will study scattering by small objects whose sizes are much smaller than
the wavelength of the incoming field. Then a multipole approach is conve-
nient. We will also introduce a method to model a medium with inclusions
of a different material. We limit that consideration to an electrostatic (or
magnetostatic) case, but results are also applicable in scattering problems
with certain limitations.

4.1 Scattering at long wavelengths

4.1.1 Dipole approximation

Consider a piece of material whose dimensions are much smaller than the
wavelength of the incoming electromagnetic plane wave. The assumption
that the incoming field is a plane wave is clearly acceptable. Let n0 be the
direction of the incident (primary) wave and u0 the direction of polarization.
Then

Einc = u0E0e
ikn0·r

Binc = u0 ×Einc/c (4.1)

where k = ω/c and the time-dependence is the usual e−iωt. As shown
in the previous chapter, the scattered (secondary) fields at large distances
(radiation zone) are

Esc =
µ0ck

2eikr

4πr
(c(n × p) × n− n×m)

Bsc = n×Esc/c (4.2)
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where n is the unit vector from the scatterer to the observation point and r
is the distance between the scatterer and observer.

A widely used quantity is the differential scattering cross section. It
is the power radiated in the direction n with polarizationu, per unit solid
angle, per unit incident flux in the direction n0 with polarizationu0:

dσ

dΩ
(n,u;n0,u0) = r2 |u∗ ·Esc|2

|u∗
0 ·Einc|2

(4.3)

Note that the complex conjugate of the polarizationvector is important.
Using the dipole approximation, the differential cross section takes the form

dσ

dΩ
(n,u;n0,u0) =

µ2
0c

2k4

16π2E2
0

|cu∗ · p + (n × u∗) ·m|2 (4.4)

The dependence of the cross section on n0 and u0 is implicitly contained
in the dipole moment vectors p and m, since they depend on the incident
wave. The cross section is proportional to k4 or equivalently to 1/λ4, a
result known as Rayleigh’s law. This is a universal characteristic of the
scattering of long wavelength radiation by any finite system, except for a
special case that both dipole moments happen to vanish. For the visible
light the blue colour has the shortest wavelength, so Rayleigh’s law gives
the basic explanation for the colour of the sky.

4.1.2 Dielectric spherical scatterer

As an example of dipole scattering, consider a small neutral dielectric sphere
of radius a and permittivity ε. We know from electrostatics that the induced
dipole moment is

p = 4πε0a
3 ε− ε0
ε+ 2ε0

Einc (4.5)

Due to the absence of free charges, there is no magnetic dipole moment.
The differential scattering cross section is now

dσ

dΩ
= k4a6 | ε− ε0

ε+ 2ε0
|2 |u∗ · u0|2 (4.6)

The scattered radiation is linearly polarised in the plane defined by the
dipole moment direction (u0) and the unit vector n.

The incident radiation is typically unpolarised. Then it is interesting to
study the angular distribution of scattered radiation of a definite state of
linear polarization(u). We define the scattering plane by vectors n0 and n to

be the xz-plane. The polarizationvectors u
(1)
0 and u(1) are in this plane, and
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u
(2)
0 = u(2) is perpendicular to it. The differential cross sections for scatter-

ing with the polarizations u(1) and u(2) averaged over initial polarizations
are

dσ‖
dΩ

=
k4a6

2
| ε− ε0
ε+ 2ε0

|2 cos2 θ

dσ⊥
dΩ

=
k4a6

2
| ε− ε0
ε+ 2ε0

|2 (4.7)

where θ is the angle between n0 and n (as well between u0 and u). The
subscripts ‖ and ⊥ denote polarization parallel and perpendicular to the
scattering plane, respectively.

The polarization Π(θ) of the scattered radiation is defined by

Π(θ) =
dσ⊥/dΩ − dσ‖/dΩ

dσ⊥/dΩ + dσ‖/dΩ
(4.8)

which for the present example is

Π(θ) =
sin2 θ

1 + cos2 θ
(4.9)

The differential cross section is the sum of parallel and perpendicular con-
tributions:

dσ

dΩ
=
k4a6

2
| ε− ε0
ε+ 2ε0

|2 (1 + cos2 θ) (4.10)

The total cross section is

σ =

∫

(4π)

dσ

dΩ
dΩ =

8πk4a6

3
| ε− ε0
ε+ 2ε0

|2 (4.11)

Exercise: plot dσ/dΩ and Π(θ).

4.1.3 Perfectly conducting spherical scatterer

In the case of a perfectly conducting small sphere, both electric and magnetic
dipoles are present. Induced dipole moments familiar from electro- and
magnetostatics are

p = 4πε0a
3Einc (4.12)

and

m = −2πa3

µ0
Binc (4.13)

An exercise is to determine the polarization and the total cross section.
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4.2 Maxwell Garnett mixing formula

The material parameters in the Maxwell equations are macroscopic quan-
tities. Therefore, the electromagnetic fields solved from the equations are
some kind of averages of the microscopic field distributions. For exam-
ple, when we study radio wave propagation in the air we do not solve the
fields acting between single electrons and protons nor even between various
molecules, but we calculate the average fields in the size scale of 1020 atoms.
However, to be able to get good macroscopic approximations, we have to
take into account what is happening in the microscopic level. To model
realistically air as a dielectric material, it is necessary to consider the dif-
ferent scales of microscopic inhomogeneities. Air consists of many different
particles of different sizes. It is a mixture of gases, liquids and solids. In
case of rain, condensed water phase in the form of drops gives a considerable
contribution to the permittivity.

Mixing theories aim at predicting the effective response of mixtures with-
out having to calculate the microscopic fields. The goal of the theories is to
provide a method to determine the effective material parameters (permittiv-
ity, permeability, conductivity) that can be used in the Maxwell equations.
The following presentation is based on electrostatics. However, results are
applicable also to time-dependent cases assuming that sizes of scatterers are
much smaller than the wavelength.

The oldest mixing formula is by Maxwell Garnett1. To derive this result,
we start by defining the molecular polarizability α of a single molecule:

pm = αε0Em (4.14)

where pm is the induced dipole moment and Em is the polarizing electric
field at the location of the molecule. For simplicity, we assume that there
is no permanent polarization. We also assume that the polarizability is a
scalar, since we will restrict the treatment to uniform spherical inclusions.

The polarizing field is produced by all external sources and by polarized
molecules except the one under study. We can imagine that we remove a
small cavity around the molecule. Now Em can be expressed as

Em = E + Ep + Enear (4.15)

Here E is the average field in the whole body, Ep the field due to polarization
charges on the surface of the cavity and Enear is due to all other molecules
inside the cavity. We assume that the structure is regular enough, like a
cubical grid, or that molecules are randomly distributed. Then Enear is
zero.

1Maxwell Garnett, J.C., Colours in metal glasses and metal films, Transactions of the
Royal Society, CCIII, 385-420, 1904.



4.2. MAXWELL GARNETT MIXING FORMULA 43

Determination of Ep is a little tricky, since the result depends on the
shape of the cavity. Since we will later study spherical inclusions, the cavity
is also assumed to be spherical. Now we can use the result that the electric
field in a uniformly polarized sphere is −P/(3ε0). Consequently, in the
cavity Em = E + P/(3ε0).

If the number density of molecules is n then the polarization is according
to its definition P = npm yielding

P = nαε0(E + P/(3ε0)) (4.16)

On the other hand P = (εr − 1)ε0E, which results in the Clausius and
Mossotti equation

α =
3(εr − 1)

n(εr + 2)
(4.17)

Although we have so far considered a molecule, it could as well be a macro-
scopic particle of a spherical shape.

Next we investigate a collection of inclusions which are homogeneous
spheres having a permittivity ε. The polarizability of a single sphere follows
directly from the solution of the Laplace equation with a uniform background
field. The distortion of the sphere outside its surface is exactly equal to that
by a dipole placed at the centre of the sphere. Using this familiar result, we
see that

α = 3V
ε− ε0
ε+ 2ε0

(4.18)

where V is the volume of the sphere and the background material is like
vacuum.

Homogenization of the mixture means that the two expressions of the
polarizability are set equal. This yields the effective permittivity of the
material composed of spherical inclusions:

εeff = εrε0 = ε0 + 3fε0
ε− ε0

ε+ 2ε0 − f(ε− ε0)
(4.19)

where f = nV is the volume fraction of spheres (0 ≤ f ≤ 1). It is obvious
that for a host medium of permittivity εh with inclusions of permittivity εi
the effective permittivity is

εeff = εh + 3fεh
εi − εh

εi + 2εh − f(εi − εh)
(4.20)

This is the basic form of the Maxwell Garnett mixing formula. It is easy to
check that this gives meaningful results for the special cases εi = εh, f = 0,
and f = 1. A few curves are shown in Fig. 4.2. It is evident that the validity
of the formula is best at low volume fractions, since its derivation is based
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Figure 4.1: Effective permittivity εeff according to the Maxwell Garnett
mixing formula. The permittivity of the host material is εh and of the
inclusions Rεh. The volume fraction of the inclusions is f . The vertical
scale is logarithmic.

on the analytical treatment of one sphere in an infinite space. More compli-
cated situations are studied by Avelin (2003)2 and Kärkkäinen (2003)3, for
example.

As a short note, we mention the more general definition of the polariz-
ability of a general object is

pm = ε0α ·Em (4.21)

In most cases α is a tensor, like for an ellipsoid. It is a scalar only for some
special objects, including the five regular polyhedra: tetrahedron, hexahe-
dron (cube), octahedron, dodecahedron and icosahedron (see Avelin, 2003).

2Avelin, J., Polarizability analysis of canonical dielectric and bi-anisotropic scatterers,
HUT/Electromagnetics Laboratory, Ph.D. thesis, 2003.

3Kärkkäinen, K., On the finite-difference modelling of electromagnetic problems in
structured lattices, HUT/Electromagnetics Laboratory, Ph.D. thesis, 2003.


