
Chapter 6

Wave guides and resonant

cavities

The course of electrodynamics introduces ideal models of wave guides with
perfectly conducting walls. We start by a short discussion about power
losses in wave guides whose walls have a finite conductivity. Next, we will
consider dielectric wave guides, and finally an idealised resonant cavity with
spherical surfaces.

To refresh memory, we outline briefly how to handle cylindrical wave
guides in general. Considering propagating waves parallel to the cylinder
axis (z), we may assume a dependence ei(kz−ωt). The fields have the form

E(x, y, z) = E(x, y)ei(kz−ωt) , B(x, y, z) = B(x, y)ei(kz−ωt) (6.1)

from which it follows that

(∇2
t +

ω2

c2
− k2)E = 0 , (∇2

t +
ω2

c2
− k2)B = 0 (6.2)

where

∇t = ∇− ez
∂

∂z
, ∇2

t = ∇2 − ∂2

∂z2
(6.3)

We decompose the fields into parallel and transverse parts:

E = Ez + Et (6.4)

where

Ez = (E · ez)ez

Et = (ez ×E) × ez (6.5)
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Now the Maxwell equations are

∇t · Et = −∂Ez

∂z
= −ikEz (6.6)

∇t ·Bt = −∂Bz

∂z
= −ikBz (6.7)

ez · (∇t ×Et) = iωBz (6.8)

∇tEz −
∂Et

∂z
= ∇tEz − ikEt = iωez ×Bt (6.9)

ez · (∇t ×Bt) = − iω
c2
Ez (6.10)

∇tBz −
∂Bt

∂z
= ∇tBz − ikBt = −i ω

c2
ez ×Et (6.11)

If Bz ja Ez are known then the transverse components can be solved from
6.9 ja 6.11.

6.1 Fields at the surface and inside a conductor

In the idealized case of a perfect conductor, both the electric and the mag-
netic fields vanish inside the conductor. This is due to surface charge and
current distributions, which react immediately to the changes of external
fields to cancel fields inside the conductor. Just outside the electric field has
only a normal component and the magnetic field only a tangential compo-
nent. The former is proportional to the surface charge density and the latter
to the surface current density.

Concerning real metallic wave guides, their walls have finite conductivi-
ties. It follows that there are power losses when the electromagnetic signal
propagates along the guide. The purpose of the following discussion is to
derive a scheme to estimate these losses. We could solve the problem an-
alytically in case of simple structures, but we prefer to handle a general
situation.

As we have learned from the solution of the half-space problem (Sect. 5),
the skin depth describes the attenuation scale of the fields in a uniformly
conducting medium. We assume that the skin depth is clearly smaller than,
for example, the wall thickness of the wave guide. Then we know that there
is only a thin transition layer within which the fields practically go to zero.
So we can first solve the fields inside an ideal wave guide and use them to
estimate losses in the transition layer.
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The Maxwell curl equations, neglecting the displacement current, are
inside the conductor

Ec = ∇×Hc/σ

Hc = ∇×Ec/(iωµ) (6.12)

Due to the rapid attenuation of the fields in the conductor, we can assume
gradients normal to the surface much larger than parallel to it. In other
words, gradient is nearly equal to its normal component:

∇ ≈ −n
∂

∂z
(6.13)

where n is the unit normal vector outward from the conductor and z is the
normal coordinate inward into the conductor. So the curl equations are

Ec ≈ − 1

σ
n× ∂Hc

∂z

Hc ≈ i

ωµ
n× ∂Ec

∂z
(6.14)

It follows for the magnetic field that

∂2

∂z2
(n×Hc) +

2i

δ2
(n×Hc) ≈ 0

n · Hc ≈ 0 (6.15)

where δ =
√

2/(ωµσ) is the skin depth.

The magnetic field inside the conductor is parallel to the surface, and it
decays exponentially:

Hc = H‖e
−z/δeiz/δ (6.16)

where H‖ is the tangential field outside the surface. The electric field inside
the conductor is

Ec ≈ (1 − i)

√

ωµ

2σ
n×H‖e

−z/δeiz/δ (6.17)

Since this is tangential, the continuity condition implies that there is a small
tangential electric field just outside the surface too. An easy exercise is to
show that |Ec/(cB‖)| � 1.

Due to the existence of tangential electric and magnetic fields just outside
the surface, there is a power flow into the conductor. The time-averaged
power absorbed per unit area is

dP

dA
=

1

2
Re(n ·E×H∗) =

ωµδ

4
|H‖|2 (6.18)
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The reader may check that this is equal to the Ohmic losses inside the
conductor. Because the current is confined in a thin layer, it can be approx-
imated by an effective surface current density

Keff ≈ n×H‖ (6.19)

So the estimated power loss can be determined from

dP

dA
≈ 1

2σδ
|Keff |2 (6.20)

6.2 Dielectric wave guides

The basic model of an optical wave guide is a dielectric straight cylinder
surrounded by air. Fields inside (1) and outside (0) of the cylinder satisfy
equations

(∇2
t + ω2µ1ε1 − k2

1)F = 0

(∇2
t + ω2µ0ε0 − k2

0)F = 0 (6.21)

where F is B or E and ∇2
t = ∇2 − ∂2/∂z2. The boundary conditions at the

surface of the cylinder are the continuity of Bn, Dn, Et and Ht. This implies
that the wave number must be the same inside and outside, k0 = k1 = k.
The quantity γ2 = ω2µ1ε1 − k2 must be positive inside to get finite fields.
The outside fields must vanish rapidly at large distances so that there is no
energy flow across the surface of the cylinder. So β2 = k2 −ω2µ0ε0 must be
positive.

Next, we study a cylinder with a circular cross section of radius a and
µ1 = µ0. Assuming that there is no angular dependence, the parallel com-
ponents Fz = Bz, Ez fulfill the Bessel equation

(
d2

dρ2
+

1

ρ

d

dρ
+ γ2)Fz(ρ) = 0, ρ < a

(
d2

dρ2
+

1

ρ

d

dρ
− β2)Fz(ρ) = 0, ρ > a (6.22)

The physically acceptable solutions are

Fz(ρ) = J0(γρ), ρ ≤ a

Fz(ρ) = AK0(βρ), ρ > a (6.23)

where J0 is the Bessel function and K0 is the modified Bessel function. The
constant A will be determined by boundary conditions. A straightforward
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exercise is to show that the transverse components inside are

Bρ =
ik

γ2

∂Bz

∂ρ

Bφ =
iωµ0ε1
γ2

∂Ez

∂ρ

Eφ = −ω
k
Bρ

Eρ =
k

ωµ0ε1
Bφ (6.24)

and outside

Bρ = − ik

β2

∂Bz

∂ρ

Bφ = − iωµ0ε0
β2

∂Ez

∂ρ

Eφ = −ω
k
Bρ

Eρ =
k

ωµ0ε0
Bφ (6.25)

Furthermore, the triplets (Bz, Bρ, Eφ) (TE mode) and (Ez, Eρ, Bφ) (TM
mode) are independent of each other.

The fields of the TE mode inside the cylinder are

Bz = J0(γρ), Bρ = − ik
γ
J1(γρ), Eφ =

iω

γ
J1(γρ) (6.26)

and outside

Bz = AK0(βρ), Bρ =
ikA

β
K1(βρ), Eφ = − iωA

β
K1(βρ) (6.27)

Application of the boundary conditions at ρ = a yields

− J1(γa)

γJ0(γa)
=

K1(βa)

βK0(βa)
(6.28)

This is a transcendental equation for the wave number k, taking into account
the additional condition

γ2 + β2 = µ0(ε1 − ε0)ω
2 (6.29)

Figure 6.1 shows the graphical solution of this equation. The uniform line is
the left-hand-side of Eq. 6.28 and the dashed line is its right-hand-side. The
vertical uniform lines are at the zeros of J0(γa), and the vertical dashed line
shows the zero point of β. In this example, the zero point of β is larger than
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Figure 6.1: Graphical solution of Eq. 6.28. The uniform line is the left-
hand-side of Eq. 6.28 and the dashed line is its right-hand-side. The vertical
uniform lines are at the zeros of J0(γa), and the vertical dashed line shows
the zero point of β. Solutions of the equation are marked by black dots.

the two first zero points of J0(γa), so there are two possible values of k. If
the zero point of β were smaller than 2.405 then there would be no solution
with real β. Consequently, the smallest cut-off frequency is

ω01 ≈ 2.405

a
√

µ0(ε1 − ε0)
(6.30)

At this frequency β2 = 0 and k = ω01
√
µ0ε0. An exercise is to show that

immediately below ω01 the system is not any more a wave guide but a
radially radiating antenna.

6.3 Schumann resonances

A natural resonant cavity powered by lightning exists between the earth
and the ionosphere. Qualitatively, the characteristic wavelength is of the
order of the Earth’s radius, and the corresponding frequency is some tens
of Hz. Then the skin depths in the ground and the ionosphere are small
enough that, as the first approximation, the cavity can be modelled as a
non-conducting volume between perfectly conducting shells (radii a and b =
a+ h).
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If we only consider the lowest frequencies we can focus attention on the
TM mode with no radial magnetic field. Namely, the TM modes with a
radial electric field can satisfy the boundary condition of a vanishing tan-
gential electric field at r = a and r = b without a significant radial variation
of the fields. On the other hand, the TE modes with only a tangential elec-
tric field must have a radial variation of the order of h between the shells. It
follows that the lowest frequencies of the TM and TE modes are ωTM ∼ c/a
and ωTE ∼ c/h.

We study only TM modes and assume further that there is no azimuthal
(φ) dependence. Then the magnetic field can have only the φ component,
which follows from ∇ · B = 0 and the requirement of finite fields at θ = 0.
Faraday’s law then implies that Eφ = 0 so that the only non-vanishing
components are Bφ, Er, Eθ.

With the harmonic time-dependence we again end at the wave equation

∇2B +
ω2

c2
B = 0 (6.31)

The φ component yields

ω2

c2
rBφ +

∂2

∂r2
(rBφ) +

1

r2
∂

∂θ
(

1

sin θ

∂

∂θ
(sin θ rBφ)) = 0 (6.32)

whose angular part can be written as

∂

∂θ
(

1

sin θ

∂

∂θ
(sin θ rBφ)) =

1

sin θ

∂

∂θ
(sin θ

∂(rBφ)

∂θ
) − rBφ

sin2 θ
(6.33)

Comparison to the differential equation of the associated Legendre polyno-
mials indicates that the field can be written as

Bφ(r, θ) =
ul

r
P 1

l (cos θ) (6.34)

where l = 1, 2, .... The differential equation for ul is then

d2ul(r)

dr2
+ (

ω2

c2
− l(l + 1)

r2
)ul(r) = 0 (6.35)

which is related to the spherical Bessel functions.

To apply the boundary conditions, we need the tangential electric field

Eθ = − ic
2

ωr

∂

∂r
(rBφ) = − ic

2

ωr

dul(r)

dr
P 1

l (cos θ) (6.36)

This must vanish at r = a, r = b, which implies that dul(r)/dr must vanish at
these shells. This leads to a transcendental equation for the characteristic
frequencies, and a detailed consideration is left as an exercise. However,
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rough values can be found using the relation h/a � 1. Now it is safe to
replace l(l + 1)/r2 by l(l + 1)/a2. The differential equation for ul has then
trigonometric solutions sin qr and cos qr, where

q2 = ω2/c2 − l(l + 1)/a2

The boundary condition is satisfied if ul(r) ∼ cos q(r − a) and qh = nπ, n =
0, 1, 2, .... Only the case n = 0 can provide very low frequencies:

ωl ≈
√

l(l + 1) c/a

These are called Schumann resonances, and the five first frequencies are
ωl/(2π) = 10.6, 18.3, 25.8, 33.4, 40.9 Hz. The observed values are about 8,
14, 20, 26, 32 Hz.


