Chapter 7

Corrections and additional comments

Page 5: Eq. 1.2 should read

$$
f(\mathbf{r})=\frac{1}{(2 \pi)^{3 / 2}} \int F(\mathbf{b}) e^{+i \mathbf{b} \cdot \mathbf{r}} d^{3} \mathbf{b}
$$

Page 14: Replace the following text after Eq. 2.46 "Writing $\mathbf{C}=\nabla^{2} \mathbf{G}(\mathbf{r})$ and defining $\boldsymbol{\Pi}^{\prime}=\boldsymbol{\Pi}-\nabla \times \mathbf{G}$ we see that both $\boldsymbol{\Pi}$ and $\boldsymbol{\Pi}^{\prime}$ satisfy the same equations. Consequently, it is possible to choose $\mathbf{C}=0$." by "Writing $\mathbf{C}=\nabla^{2} \mathbf{G}(\mathbf{r})$ and defining $\boldsymbol{\Pi}^{\prime}=\boldsymbol{\Pi}-\nabla \times \mathbf{G}$ we see that it is possible to choose $\mathbf{C}=0$."

Page 14: The current density \mathbf{J} in Eq. 2.48 refers to other than Ohmic currents. The reader may verify that $\nabla \cdot \mathbf{J}_{t o t}+\partial \rho / \partial t=0$. For a conducting material, the Hertz vector has the following relationship to the scalar and vector potentials:

$$
\begin{aligned}
\varphi & =-\nabla \cdot \boldsymbol{\Pi} \\
\mathbf{A} & =\mu \epsilon \frac{\partial \boldsymbol{\Pi}}{\partial t}+\mu \sigma \boldsymbol{\Pi}
\end{aligned}
$$

Page 15: Replace φ and \mathbf{A} in Eq. 2.50 by φ^{*} and \mathbf{A}^{*}.
Page 19: Eq. 3.12 should read

$$
\frac{d P_{r a d}}{d \Omega}=\ldots=\frac{\mu_{0} c^{3} k^{4}}{32 \pi^{2}}|(\mathbf{n} \times \mathbf{p}) \times \mathbf{n}|^{2}
$$

Note also that \mathbf{p} is generally a complex-valued vector.
Page 20: In Eq. 3.14, $(1 / r-i k)$ in front of the integral: $1 / r$ is from Eq. 3.6 ensuring that the vector potential is exact outside of the source. The leading term $-i k$ is from the power series 3.4 (see Jackson for mathematical details).

Page 21: Sect. 3.2.1: It is also possible to calculate \mathbf{E} without the scalar potential as explained in Sect. 3.1. Some care is needed when using the formula $\mathbf{E}=i c^{2} \nabla \times \mathbf{B} / \omega$, since it requires the complex representation of the time-harmonic terms.
Page 22: Eq. 3.31 should read

$$
\frac{d P}{d \Omega}=\ldots=\frac{1}{\epsilon_{0} c}\left(\frac{I_{0} L \omega}{4 \pi c}\right)^{2} \sin ^{2} \theta \cos ^{2} \omega(t-R / c)
$$

Page 25: Eq. 3.47 should read

$$
\mathbf{J}(\mathbf{r})=I \sin (k d / 2-k|z|) \theta(d / 2-|z|) \delta(x) \delta(y) \mathbf{e}_{z}
$$

Page 31: Addition after Eq. 3.86: the Cartesian components of the operator \mathbf{L} are

$$
\begin{aligned}
L_{x} & =-i\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial x}\right)=i\left(\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right) \\
L_{y} & =-i\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right)=i\left(-\cos \phi \frac{\partial}{\partial \theta}+\cot \theta \sin \phi \frac{\partial}{\partial \phi}\right) \\
L_{z} & =-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)=-i \frac{\partial}{\partial \phi}
\end{aligned}
$$

Page 31: The last formula in Eq. 3.89 should read

$$
\mathbf{L} \cdot(\nabla \times \mathbf{F})=i \nabla^{2}(\mathbf{r} \cdot \mathbf{F})-\frac{i}{r} \frac{\partial}{\partial r}\left(r^{2} \nabla \cdot \mathbf{F}\right)
$$

Page 34: Eq. 3.105 should read

$$
\begin{aligned}
a_{M}(l, m) g_{l}(k r) & =\frac{k c}{\sqrt{l(l+1)}} \int Y_{l m}^{*} \mathbf{r} \cdot \mathbf{B} d \Omega \\
a_{E}(l, m) f_{l}(k r) & =-\frac{k}{c \sqrt{l(l+1)}} \int Y_{l m}^{*} \mathbf{r} \cdot \mathbf{E} d \Omega
\end{aligned}
$$

Note that the definitions of the multipole fields vary in literature.
Page 37: Eq. 3.127 should read

$$
\begin{aligned}
a_{M}(l, m) g_{l}(k r) & =\frac{k c}{\sqrt{l(l+1)}} \int Y_{l m}^{*} \mathbf{r} \cdot \mathbf{B} d \Omega \\
a_{E}(l, m) f_{l}(k r) & =-\frac{k}{c \sqrt{l(l+1)}} \int Y_{l m}^{*} \mathbf{r} \cdot \mathbf{E}^{\prime} d \Omega
\end{aligned}
$$

Page 37: Eq. 3.129 should read

$$
\int d \Omega Y_{l m}^{*}(\theta, \phi) \frac{e^{i k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=4 \pi i k h_{l}^{(1)}(k r) j_{l}\left(k r^{\prime}\right) Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right)
$$

Page 38: Eq. 3.130 should read

$$
\begin{aligned}
a_{M}(l, m) & =-\frac{\mu_{0} k^{2} c}{\sqrt{l(l+1)}} \int j_{l}(k r) Y_{l m}^{*}(\theta, \phi) \mathbf{L} \cdot \mathbf{J}(\mathbf{r}) d^{3} \mathbf{r} \\
a_{E}(l, m) & =\frac{i \mu_{0} k}{\sqrt{l(l+1)}} \int j_{l}(k r) Y_{l m}^{*}(\theta, \phi) \mathbf{L} \cdot \nabla \times \mathbf{J}(\mathbf{r}) d^{3} \mathbf{r}
\end{aligned}
$$

Page 39: The magnetic field in Eq. 4.1 should be $\mathbf{B}_{i n c}=\mathbf{n}_{0} \times \mathbf{E}_{\text {inc }} / c$
Page 47: Addition concerning Eq. 5.10: the secondary Hertz vector in the air could be simply written as

$$
\int_{0}^{\infty} d b C(b) J_{0}(b \rho) e^{-K_{0} z}
$$

The reason for expressing $C(b)$ in an apparently much more complicated way is that then boundary conditions have a convenient form. Frankly speaking, we have also used knowledge of the solution beforehand.
Page 51: Eq. 5.27 should read

$$
\begin{aligned}
D_{n} e^{K_{n} z_{n}}+G_{n} e^{-K_{n} z_{n}} & =D_{n+1} e^{K_{n+1} z_{n}}+G_{n+1} e^{-K_{n+1} z_{n}} \\
\frac{K_{n}}{\mu_{n}}\left(D_{n} e^{K_{n} z_{n}}-G_{n} e^{-K_{n} z_{n}}\right) & =\frac{K_{n+1}}{\mu_{n+1}}\left(D_{n+1} e^{K_{n+1} z_{n}}-G_{n+1} e^{-K_{n+1} z_{n}}\right)
\end{aligned}
$$

Page 52, first row: Replace $e^{-b^{\prime} x}$ by $e^{-i b^{\prime} x}$.
Page 52: Addition after Eq. 5.37: The recursion formula shows that the surface impedance is an even function of $b: Z(-b)=Z(b)$.

Page 53, Eq. 5.40: The coefficient in front of the integral must be

$$
\frac{i \mu_{0} I(\omega)}{4 \pi}
$$

Page 55: For better notations, write Eq. 5.47 as

$$
R(K)=\int_{0}^{\infty e^{i \alpha}} d s f(s) e^{-s K}
$$

and replace b by s in the text following this equation. Also, write Eq. 5.48 as

$$
\begin{aligned}
\Pi= & \frac{I L}{4 \pi(\sigma-i \omega \epsilon)}\left(\int _ { 0 } ^ { \infty } d b \frac { b } { K } \left(e^{-K|z-h|} J_{0}(b \rho)+\right.\right. \\
& \left.\int_{0}^{\infty e^{i \alpha}} d s f(s) \int_{0}^{\infty} d b \frac{b}{K} e^{-K(z+h+s)} J_{0}(b \rho)\right)
\end{aligned}
$$

Replace in the following text on page $56 b$ by s in the corresponding places.

Page 58, first row: We neglect the displacement current everywhere and assume a non-conducting air, approximating $K_{0} \approx b$.

Page 58, Eq. 5.63: There must be a minus sign between the two exponential terms in the integrand.
Page 66, Eq. 5.89: Replace in the latter term $i g(\omega)$ by $-i g(\omega)$.
Updated: February 24, 2005.
Pages 67-68: Remove the following partly badly formulated text: "We can also see this as a consequence of a general mathematical fact: assume that functions $a(t)$ and $b(t)$ are related in the frequency domain by $a(\omega)=c(\omega) b(\omega)$. Assume that $c(\omega)$ has no poles in the half plane $\operatorname{Im}(\omega) \geq 0$ and that $|c(\omega)| \rightarrow 0$ when $|\omega| \rightarrow 0$ in that half plane. Then $a(t)$ depends only on previous values of $b(t)$. The reader may verify that these assumptions hold in our example."
Page 85: Note that the z coordinate used in Sect. 6.1 is not along the axis of a waveguide as elsewhere in Chapter 6. For clarity, replace z in Sect. 6.1 by s, for example.
Page 86, Eq. 6.23: We write $F_{z}(\rho)=J_{0}(\gamma \rho)$ for $\rho \leq a$ without any coefficient, since we are only looking for possible wave numbers. We could as well write $F_{z}(\rho)=C J_{0}(\gamma \rho)$, but it would not affect Eq. 6.28.
Page 88: Corrected Fig. 6.1 below.
Page 89: TM mode means in the spherical geometry that there is no radial magnetic field.

Figure 7.1: Corrected Fig. 6.1

Page 89, Eq. 6.31: Note that the Laplacian operates on a vector given by spherical components. It is safer to consider the equivalent equation

$$
\nabla \times(\nabla \times \mathbf{B})-\frac{\omega^{2}}{c^{2}} \mathbf{B}=0
$$

since $\nabla \times(\nabla \times \mathbf{B})=\nabla \nabla \cdot \mathbf{B}-\nabla^{2} \mathbf{B}=-\nabla^{2} \mathbf{B}$. Calculate first $\nabla \times \mathbf{B}$ and then its curl in spherical coordinates.
Updated: February 28, 2005.

