
Chapter 7

Corrections and additional

comments

Page 5: Eq. 1.2 should read

f(r) =
1

(2π)3/2

∫

F (b)e+ib·rd3b

Page 14: Replace the following text after Eq. 2.46 ”Writing C = ∇2G(r)
and defining Π′ = Π−∇×G we see that both Π and Π′ satisfy the same
equations. Consequently, it is possible to choose C = 0.” by ”Writing
C = ∇2G(r) and defining Π′ = Π − ∇ × G we see that it is possible to
choose C = 0.”

Page 14: The current density J in Eq. 2.48 refers to other than Ohmic
currents. The reader may verify that ∇·Jtot + ∂ρ/∂t = 0. For a conducting
material, the Hertz vector has the following relationship to the scalar and
vector potentials:

ϕ = −∇ ·Π

A = µε
∂Π

∂t
+ µσΠ

Page 15: Replace ϕ and A in Eq. 2.50 by ϕ∗ and A∗.

Page 19: Eq. 3.12 should read

dPrad

dΩ
= ... =

µ0c
3k4

32π2
|(n× p) × n|2

Note also that p is generally a complex-valued vector.

Page 20: In Eq. 3.14, (1/r − ik) in front of the integral: 1/r is from Eq. 3.6
ensuring that the vector potential is exact outside of the source. The leading
term −ik is from the power series 3.4 (see Jackson for mathematical details).
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92 CHAPTER 7. CORRECTIONS AND ADDITIONAL COMMENTS

Page 21: Sect. 3.2.1: It is also possible to calculate E without the scalar
potential as explained in Sect. 3.1. Some care is needed when using the
formula E = ic2∇×B/ω, since it requires the complex representation of the
time-harmonic terms.

Page 22: Eq. 3.31 should read

dP

dΩ
= ... =

1

ε0c
(
I0Lω

4πc
)2 sin2 θ cos2 ω(t−R/c)

Page 25: Eq. 3.47 should read

J(r) = I sin(kd/2 − k|z|)θ(d/2 − |z|)δ(x)δ(y)ez

Page 31: Addition after Eq. 3.86: the Cartesian components of the operator
L are

Lx = −i(y ∂
∂z

− z
∂

∂x
) = i(sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ
)

Ly = −i(z ∂
∂x

− x
∂

∂z
) = i(− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ
)

Lz = −i(x ∂
∂y

− y
∂

∂x
) = −i ∂

∂φ

Page 31: The last formula in Eq. 3.89 should read

L · (∇× F) = i∇2(r · F) − i

r

∂

∂r
(r2∇ · F)

Page 34: Eq. 3.105 should read

aM (l,m)gl(kr) =
kc

√

l(l + 1)

∫

Y ∗
lm r ·B dΩ

aE(l,m)fl(kr) = − k

c
√

l(l + 1)

∫

Y ∗
lm r ·E dΩ

Note that the definitions of the multipole fields vary in literature.

Page 37: Eq. 3.127 should read

aM (l,m)gl(kr) =
kc

√

l(l + 1)

∫

Y ∗
lm r ·B dΩ

aE(l,m)fl(kr) = − k

c
√

l(l + 1)

∫

Y ∗
lm r ·E′ dΩ

Page 37: Eq. 3.129 should read

∫

dΩ Y ∗
lm(θ, φ)

eik|r−r
′|

|r− r′| = 4πikh
(1)
l (kr)jl(kr

′)Y ∗
lm(θ′, φ′)
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Page 38: Eq. 3.130 should read

aM (l,m) = − µ0k
2c

√

l(l + 1)

∫

jl(kr)Y
∗
lm(θ, φ) L · J(r) d3r

aE(l,m) =
iµ0k

√

l(l + 1)

∫

jl(kr)Y
∗
lm(θ, φ) L · ∇ × J(r) d3r

Page 39: The magnetic field in Eq. 4.1 should be Binc = n0 ×Einc/c

Page 47: Addition concerning Eq. 5.10: the secondary Hertz vector in the
air could be simply written as

∫ ∞

0
db C(b)J0(bρ)e

−K0z

The reason for expressing C(b) in an apparently much more complicated way
is that then boundary conditions have a convenient form. Frankly speaking,
we have also used knowledge of the solution beforehand.

Page 51: Eq. 5.27 should read

Dne
Knzn +Gne

−Knzn = Dn+1e
Kn+1zn +Gn+1e

−Kn+1zn

Kn

µn
(Dne

Knzn −Gne
−Knzn) =

Kn+1

µn+1
(Dn+1e

Kn+1zn −Gn+1e
−Kn+1zn)

Page 52, first row: Replace e−b′x by e−ib′x.

Page 52: Addition after Eq. 5.37: The recursion formula shows that the
surface impedance is an even function of b: Z(−b) = Z(b).

Page 53, Eq. 5.40: The coefficient in front of the integral must be

iµ0I(ω)

4π

Page 55: For better notations, write Eq. 5.47 as

R(K) =

∫ ∞eiα

0
ds f(s)e−sK

and replace b by s in the text following this equation. Also, write Eq. 5.48
as

Π =
IL

4π(σ − iωε)
(

∫ ∞

0
db

b

K
(e−K|z−h|J0(bρ) +

∫ ∞eiα

0
ds f(s)

∫ ∞

0
db

b

K
e−K(z+h+s)J0(bρ))

Replace in the following text on page 56 b by s in the corresponding places.
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Page 58, first row: We neglect the displacement current everywhere and
assume a non-conducting air, approximating K0 ≈ b.

Page 58, Eq. 5.63: There must be a minus sign between the two exponential
terms in the integrand.

Page 66, Eq. 5.89: Replace in the latter term ig(ω) by −ig(ω).

Updated: February 24, 2005.

Pages 67-68: Remove the following partly badly formulated text: ”We
can also see this as a consequence of a general mathematical fact: as-
sume that functions a(t) and b(t) are related in the frequency domain by
a(ω) = c(ω)b(ω). Assume that c(ω) has no poles in the half plane Im(ω) ≥ 0
and that |c(ω)| → 0 when |ω| → 0 in that half plane. Then a(t) depends only
on previous values of b(t). The reader may verify that these assumptions
hold in our example.”

Page 85: Note that the z coordinate used in Sect. 6.1 is not along the axis
of a waveguide as elsewhere in Chapter 6. For clarity, replace z in Sect. 6.1
by s, for example.

Page 86, Eq. 6.23: We write Fz(ρ) = J0(γρ) for ρ ≤ a without any coefficient,
since we are only looking for possible wave numbers. We could as well write
Fz(ρ) = CJ0(γρ), but it would not affect Eq. 6.28.

Page 88: Corrected Fig. 6.1 below.

Page 89: TM mode means in the spherical geometry that there is no radial
magnetic field.
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Figure 7.1: Corrected Fig. 6.1
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Page 89, Eq. 6.31: Note that the Laplacian operates on a vector given by
spherical components. It is safer to consider the equivalent equation

∇× (∇×B) − ω2

c2
B = 0

since ∇× (∇× B) = ∇∇ · B −∇2B = −∇2B. Calculate first ∇× B and
then its curl in spherical coordinates.

Updated: February 28, 2005.


