Applications of electrodynamics, spring 2005

Exercise 4 (Thursday 17.2., return answers until 16:00 on Monday 14.2.)

1. Determine the polarization and the total cross section of a perfectly conducting sphere whose radius is much smaller than the wavelength of the incident electromagnetic field.
2. a) Show that the Maxwell Garnett mixing formula for metallic inclusions $\left(\epsilon_{i} \rightarrow \infty\right)$ is

$$
\epsilon_{e f f}=\epsilon_{h} \frac{1+2 f}{1-f}
$$

b) The Maxwell Garnett formula is accurate at low volume fractions f. One attempt to improve its validity at larger f is to consider the following iterative process:
i) Start with a uniform host material of volume V_{0} and permittivity ϵ_{h}.
ii) Add a small amount $\Delta V \ll V_{0}$ of metallic spheres and calculate the effective permittivity of this mixture.
iii) Consider the medium of the previous step as a uniform host material and add again inclusions of an amount ΔV. Continue this procedure several times.
Show that after N iterations

$$
\epsilon_{e f f}=\epsilon_{h} \prod_{n=1}^{N} \frac{1+\frac{2 \Delta V}{V_{0}+n \Delta V}}{1-\frac{\Delta V}{V_{0}+n \Delta V}}
$$

Show that at the limit $N \rightarrow \infty$

$$
\epsilon_{e f f}=\frac{\epsilon_{h}}{(1-f)^{3}}
$$

There is experimental evidence that this result is fairly accurate at least for $0 \leq f \leq 0.5$.
3. Above a uniform earth, there is a horizontal electric dipole whose current density is $\mathbf{J}(\mathbf{r}, t)=I L \delta(x) \delta(y) \delta(z-h) e^{-i \omega t} \mathbf{e}_{x}$. The electromagnetic parameters of the air are $\mu_{0}, \epsilon_{0}, \sigma_{0}$ and in the earth $\mu_{1}, \epsilon_{1}, \sigma_{1}$. The earth's surface is the $x y$-plane.
a) Show that the vector potential can be expressed as

$$
\begin{aligned}
A_{x 0} & =C \int_{0}^{\infty} d b \frac{b}{K_{0}}\left(e^{-K_{0}|z-h|}+R(b) e^{-K_{0}(z+h)}\right) J_{0}(b \rho), z>0 \\
A_{z 0} & =C \frac{\partial}{\partial x} \int_{0}^{\infty} d b S(b) e^{-K_{0}(z+h)} J_{0}(b \rho), z>0 \\
A_{x 1} & =C \int_{0}^{\infty} d b P(b) e^{K_{1} z} J_{0}(b \rho), z<0 \\
A_{z 1} & =C \frac{\partial}{\partial x} \int_{0}^{\infty} d b Q(b) e^{K_{1}} J_{0}(b \rho), z<0
\end{aligned}
$$

where C is a constant to be determined later and

$$
K=\sqrt{b^{2}-k^{2}}, \rho=\sqrt{x^{2}+y^{2}}
$$

b) Express \mathbf{B} and \mathbf{E} using only the vector potential.
c) Apply boundary conditions to solve P, Q, R, S.
d) Construct a line current of amplitude I of successive dipoles. Calculate $A_{x 1}$ and $A_{z 1}\left(\right.$ set $\left.\mu_{1}=\mu_{o}\right)$.
e) Calculate \mathbf{B}_{1} for a line current. Determine the constant C by studying a time-independent current.

Reminder: there is still time to consider the extra problem no. 5 of exercise 3 .

