Applications of electrodynamics, spring 2005

Exercise 6 (Thursday 3.3., return answers until 16:00 on Monday 28.2.)

1. Derive the plane wave formula of a uniform earth for the fields at the earth's surface:

$$
E(t)=-\frac{1}{\sqrt{\pi \mu_{0} \sigma}} \int_{0}^{\infty} \frac{g(t-u)}{\sqrt{u}} d u=-\frac{1}{\sqrt{\pi \mu_{0} \sigma}} \int_{-\infty}^{t} \frac{g(u)}{\sqrt{t-u}} d u
$$

Start from the frequency domain relation between the fields $\left(E=E_{y}, g=\right.$ $\left.d B_{x} / d t\right)$. Omit the displacement current. Be careful with the phase conventions of the wave number when performing the inverse Fourier transform.
2. Assume that the magnetic field is a vertically downwards propagating plane wave arriving at the surface $(z=0)$ of a uniform earth. Ignore the displacement current.
a) Calculate the magnetic field inside $(z>0)$ the earth assuming that the surface field $B(t)$ is known.
b) Apply the result to the case $B(t)=B_{0} \theta(t)$ where $\theta(t)$ is the Heaviside step function. Illustrate graphically.
3. Apply the method of conformal mapping to a hemispherical anomaly of Sect. 5.4.4 when the primary field is a plane wave. Calculate the fields at the earth's surface, determine image currents and sketch the field lines.

Home exam: Problems will be given at the end of the lecture on Monday, 28 February. A paper copy will be available in the library just after the lecture, and on the WWW site about one hour later. Dead-line for returning answers: beginning of the last lecture on Friday, 4 March.

