Polychoric correlation coefficient in forecast verification based on KxK contingency tables

Zoran Pasarić and Josip Juras
Geophysical Institute, Faculty of Science
University of Zagreb, CROATIA

Fourth International Verification Methods Workshop
Helsinki, 8-10 June 2009

Outline

- The bivariate normal distribution (BND) and KxK table
- Example:
- PCC for 11×11 tables of temperature change forecasts
- Additional information: Biases and base rates
- Reconstruction
- Residual
- Summary of PCC
- More examples
- QPF for the United States (6×6 tables)

Bivariate normal distribution (BND) and $\mathrm{K} \times \mathrm{K}$ contingency table

Bivariate normal distribution (BND) and $\mathrm{K} \times \mathrm{K}$ contingency table

- From CC towards the table

Bivariate normal distribution (BND) and $\mathrm{K} \times \mathrm{K}$ contingency table

- From CC towards the table
- From table towards the CC (ML method)
- Polychoric Corelation Coefficient, PCC (Ritchie-Scott, 1918,

Pearson,1922)

Example

Brooks \& Doswell (W\&F,1996): Four 11×11 tables of temperature changes

Example

Brooks \& Doswell (W\&F,1996): Four 11×11 tables of temperature changes

Differences: NWSFO-CON

TCC: $0.896 \longrightarrow 0.902$

Additional information:

 Biases and marginal frequencies of observationsTCC measures
the association, only

Reconstruction

The KxK contingency table:

- Consider the table obtained by partitioning a normalized BND according to some thresholds
- From CC and marginal frequencies it is possible to reconstruct the whole table!

$$
\begin{aligned}
& \text { Bias }=\left(P_{F, 1} / P_{1}, \ldots, P_{F, K-1} / P_{o, k-1}\right) \\
& P_{0}=\left(P_{0,1}, \ldots, P_{0, K-1}\right)
\end{aligned}
$$

$\mathrm{K} \times \mathrm{K}$ table \longleftrightarrow (TCC, Bias, $\mathrm{P}_{\text {OBS }}$) + residual

$$
\mathrm{K}^{2} \quad \rightarrow \quad 1+(\mathrm{K}-1)+(\mathrm{K}-1)+1
$$

Total no. of elements

The residuals: Overall

Residual table $=$ Original minus theoretical (BND) table

Sums of absolute differences [\%]

	LFM MOS	NGM MOS	CON	NWSFO
11×11	20.3	20.2	17.4	21.2
5×5	15.0	13.5	10.1	14.2
3×3	8.6	5.5	4.5	10.8

The residuals, cont.

CON: TCC=0.896, resid=17.4\%, $\mathrm{N}=590$

NWSFO: TCC=0.902, resid=21.2\%

	COLDER				N.C.			WARMER			
\square	0.8	0.7	-1	-0.4	-0.1	-0	-0	-0	-0	0	0
0	1.1	3	-2.2	-1.4	-0.4	-0	-0	-0	-0	0	0
0	-1	-0.4	5.4	-2.4	-1.4	-0.2	-0	-0	-0	-0	0
	-0.6	-1.9	2	7.7	-4.4	-2.9	-0	-0	-0	-0	-0
	-0.3	-1	-3.9	-2.9	12	-5.3	1.4	-0	-0	-0	-0
U	-0	-0.3	-0.4	-1.5	-10.8	9.1	2.5	1.4	-0	-0	-0
	-0	-0	-0		3.1	-3.4	-1.5	0.5	0.4	-0.1	-0
	-0	-0	-0	-0		2.7	-1.1	-0.3	-3.7	0.5	-0.1
$\stackrel{\sim}{\sim}$	-0	-0	-0	-0	-0	-0	-1.3	-0.9	3.7	-1.6	0.2
$\sum_{\boldsymbol{\sim}}^{\mathbf{N}}$	0	0	-0	-0	-0	-0	-0	-0.7	-0.3	1.3	-0.2
3	-0	0	0	0	-0	-0	-0	-0	-0	-0.2	0.2

PCC: $0.896 \rightarrow 0.902$
Correction of 2 three-class errors improves the association as correction of 20 , or so, one-class errors

Question

- Sampling variability due to insufficient sample size?

or

- Real features of the prognostic system ?
- Measure oriented
- Distribution oriented

Complementary approaches

Summary of PCC

- Partition of information
$\mathrm{K} \times \mathrm{K}$ table \longleftrightarrow (PCC, Bias, $\left.\mathrm{P}_{\text {oвs }}\right)+$ residual
- Reduction in dimensionality

$$
\mathrm{K}^{2} \rightarrow 2 * \mathrm{~K}
$$

- The PCC, Biases and $P_{\text {OBS }}$ are independent of each other
- Using them, the table could be essentially reconstructed
- The distribution oriented approach could be applied to (usually small) residual

More examples QPF, USA CONUS

Monte Carlo, cc=PCC

http://www.hpc.ncep.noaa.gov/npvu/qpfv/
ication - CONUS January-December 2008

06-Hour GRIDDED

Threshold Statistics

DATE: Fri Jan 16 22:27:24 UTC 2009 rfc conus cat DAY1 06H grid points 200801_200812
ints(1) $=1129035.0000$
NUMBER OF DAYS IN SAMPLE $=2000$
NUMBER OF POINTS PER DAY $=235$

OBS VS FCST CONTINGENCY TABLE
САТ $1=.00 \mathrm{LT} 0.01 "$ CAT $2=0.01 \mathrm{LT} 0.10^{\prime \prime}$
САТ $3=0.10 \mathrm{LT} 0.25^{\prime \prime}$
CAT $4=0.25 \mathrm{LT} 0.50^{\prime \prime}$
CAT $5=0.50 \mathrm{LT} 1.00^{\prime \prime}$
CAT $6=$ GE 1.0
$P C C=0.883$

Done

QPF, USA CONUS 2008

Biases, frequencies of observations, residual

QPF, USA CONUS monthly Time evolution of PCC for 6×6 tables

- Seasonal variation
- Slowly but constantly increasing trend
- Year to year variations

QPF, USA monthly tables, 2005-2009 PCC-s and residuals

All 12 RFCs, together

QPF, USA CONUS 2008
 Various scores for $\mathbf{2 x} 2$ tables from

Dependence on the base rate

USA CONUS 2001-2008

Trends of various scores

Many details not mentioned here, and especially so for the TCC, could be find in:
J. Juras and Z. Pasarić (2006):

Application of tetrachoric and polychoric correlation coefficients to forecast verification. Geofizika, 23, 59-82.
(http://geofizika-journal.gfz.hr)

Thanks for your attention!!

