

Verification of daily minimum and maximum temperatures in Hong Kong Sergio Buque – INAM - Mozambique Matias Armanini – SMN - Argentina **Robert Maisha** – SAWS – South Africa John Leung – HKO – Hong Kong

4IWVM- Tutorial Students Presentations – 10th June 2009

Outline

- Introduction
- Objectives
- Data and Methodology
- Results
- Summary
- Conclusion

Introduction

 Hong Kong Observatory (HKO) uses ECMWF global model forecast as a daily reference forecast for maximum and minimum temperatures for Hong Kong

• The model data is available twice daily at 00Z and 12Z and the forecast is up to 10 days ahead

• The Direct Model Output (DMO) data are subjected to postprocessing automatically at HKO using Kalman Filter (KAL) and regression (REG)

Objectives

• To compare the performance of the three different forecasts: DMO, KAL and REG in predicting min/max temperature in Hong Kong

• To find out which forecast is better in predicting min or max temperature

• To see whether there is a trend in the skill of the model

Data

- Five years (2004-2008) ECMWF DMO, KAL and REG day 1, forecast data issued at 12Z at a grid point near Hong Kong
- Five years (2004-2008) observed daily minimum and maximum temperature data at the Hong Kong Observatory Headquarters

Observed data

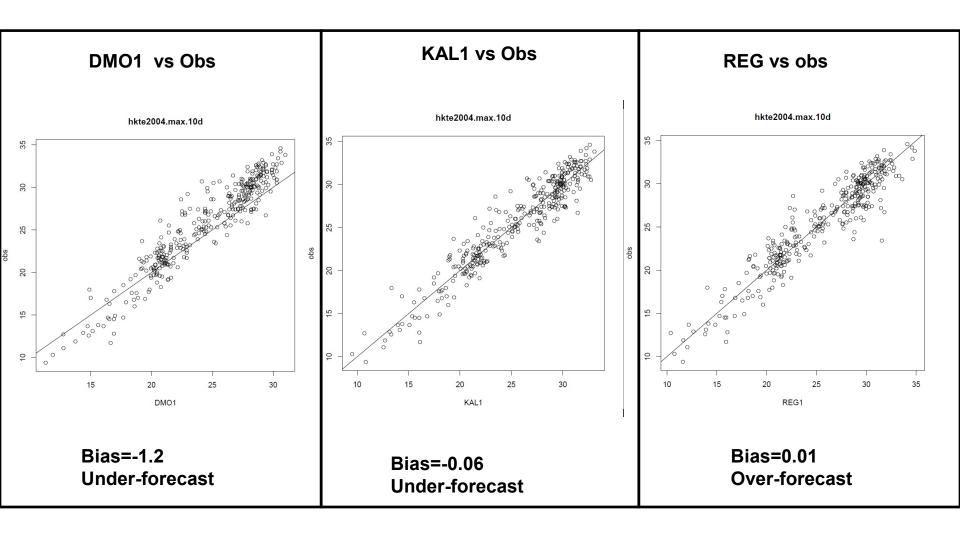
Forecast data

Methodology

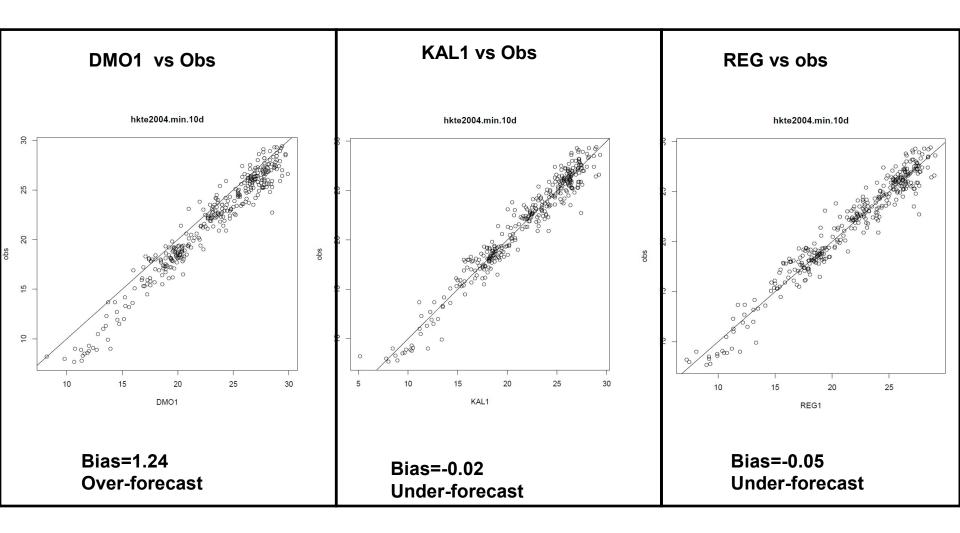
• R software was used for scatter plots and compute the following scores:

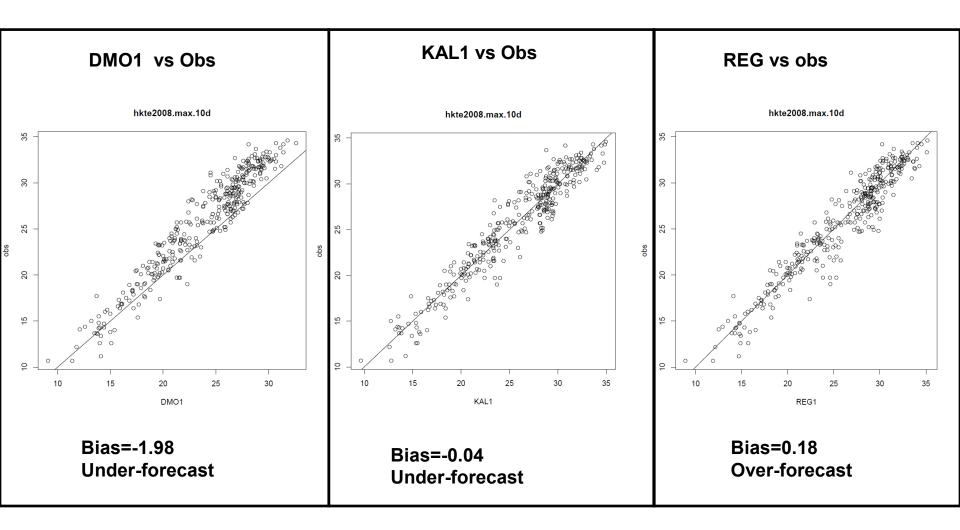
Direction of error linear bias =
$$ME = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i) = \overline{Y} - \overline{X}$$

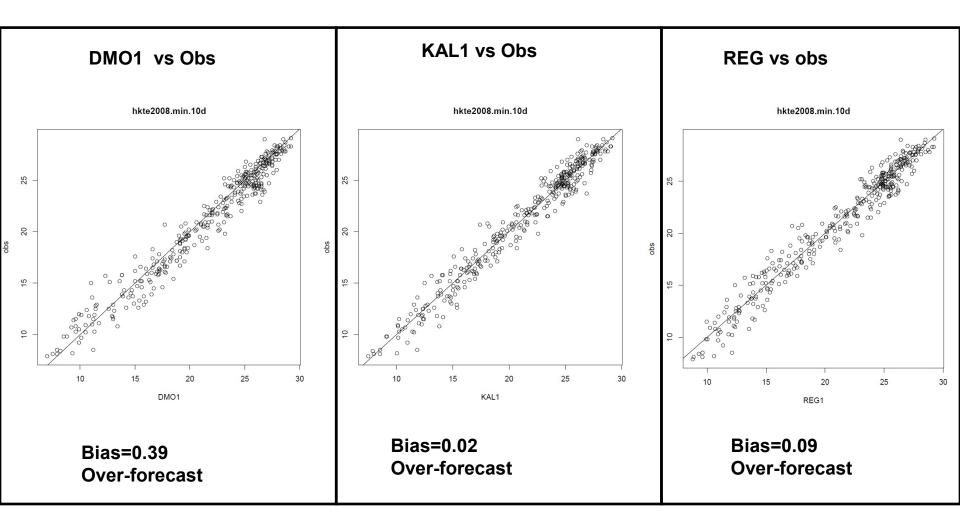
Accuracy of error


$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i)^2$$

Skill score


$$SS_{MSE} = \frac{MSE - MSE_{ref}}{MSE_{perf} - MSE_{ref}} = 1 - \frac{MSE}{MSE_{ref}}$$


Maximum temperature 2004


Minimum temperature 2004

Maximum temperature 2008

Minimum temperature 2008

2004_Max				2008_Max			
	MSE	MSERef	SS		MSE	MSERef	SS
DM01	4,8	3,7	-0,2973	DM01	6,7	4,3	-0,5581
KAL1	2.6	3,7	0.2778	KAL1	2,5	4,3	0,4186
REG1	3.0	3,7	0.1892	REG1	2,6	4,3	0,3953

2004_Min							
	MSE	MSERef	SS				
DM01	2.7	2,3	-0,1739				
KAL1	1,2	2,3	0,4783				
REG1	1,3	2,3	0,4348				

2008_Min						
	MSE	MSERef	SS			
DM01	1.5	2,3	0.3478			
KAL1	1.1	2,3	0.5000			
REG1	1.2	2,3	0.4783			

Summary

- Maximum temperatures
- An increase in MSE for DMO1 from 2004 to 2008, contribuiting to the decrease in skill.
- There was an improvement on MSE for Kalman Filter and Regression from 2004 to 2008, resulted in increase in skill.
- Post processing resulted in improved skills scores as compared to DMO1.
- DMO1 under-forecasts maximum temperatures.
- KAL1 and REG1 correct the scores.

Minimum temperatures

- There is an decrease in MSE for DMO1, and improvement in skill scores.
- There was an improvement on MSE for Kalman Filter and Regression from 2004 to 2008, resulted in increase in skill.
- Post processing resulted in improved skills scores even though the model forecast (DMO1) was good.

Conclusion

• DMO1(model) under-forecast maximum temperature, but over-forecast minimum temperature.

• DMO1 is more skillful when forecasting minimum as compared to maximum temperatures.

- Model post-processing correct forecast scores.
- Kalman filter is a better forecast tool as compared to regression.
- Kalman filter forecasts are easily comparable to observations.
- More studies are required to draw conclusion.

Thank you