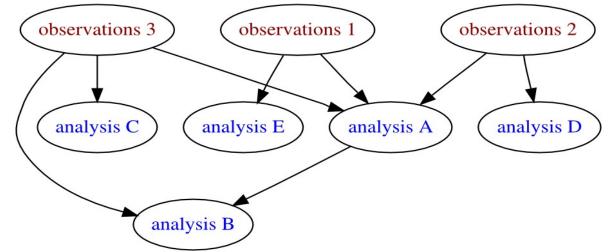


Visualising verification results when no true reference is available

Otto Hyvärinen

Finnish Meteorological Institute

Research & Development



- Problem
- A possible solution with
 - a matrix of verification results
 - multidimensional scaling
- Case study
- Open problems
- Conclusions

The problem

- In verification, one or more data sets (usually forecasts) are compared with one data set (usually observations) that is deemed to be true or at least approximately true.
- But sometimes no such independent truth is available!

- one by one, each data set is defined to be the truth
- other data sets are compared with it (using some verification measure).

0.51	0.72	0.27	0.85	1.00	IMS

0.51	0.72	0.27	0.85	1.00	IMS
0.52	0.67	0.51	1.00	0.85	MODIS

0.51	0.72	0.27	0.85	1.00	IMS
0.52	0.67	0.51	1.00	0.85	MODIS
0.16	0.20	1.00	0.51	0.27	LSA SAF

0.51	0.72	0.27	0.85	1.00	IMS
0.52	0.67	0.51	1.00	0.85	MODIS
0.16	0.20	1.00	0.51	0.27	LSA SAF
0.47	1.00	0.20	0.67	0.72	ECMWF

0.51	0.72	0.27	0.85	1.00	IMS
0.52	0.67	0.51	1.00	0.85	MODIS
0.16	0.20	1.00	0.51	0.27	LSA SAF
0.47	1.00	0.20	0.67	0.72	ECMWF
1.00	0.47	0.16	0.52	0.51	HIRLAM

HIRLAM ECMWFLSA SAF MODIS IMS

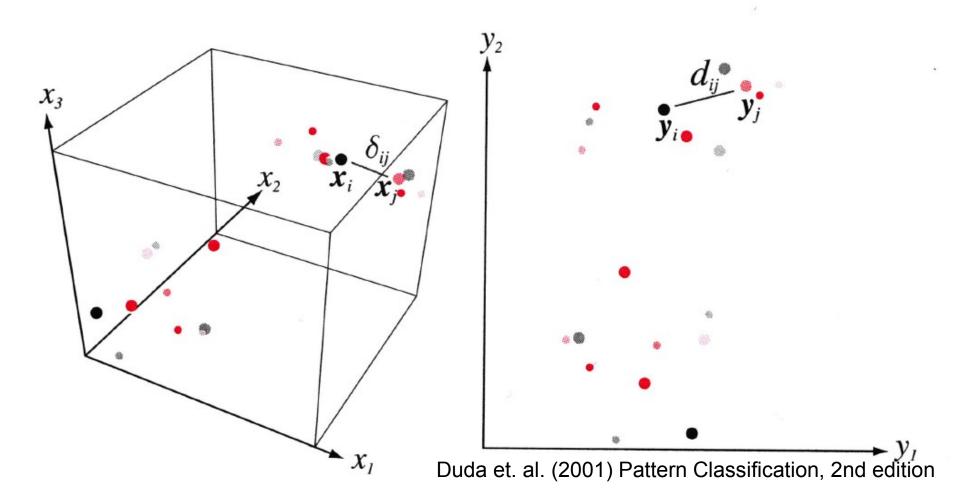
0.51	0.72	0.27	0.85	1.00	IMS
0.52	0.67	0.51	1.00	0.85	MODIS
0.16	0.20	1.00	0.51	0.27	LSA SAF
0.47	1.00	0.20	0.67	0.72	ECMWF
1.00	0.47	0.16	0.52	0.51	HIRLAM

 The matrix is symmetric (because of the measure used!) and we need only one half of it...

Result

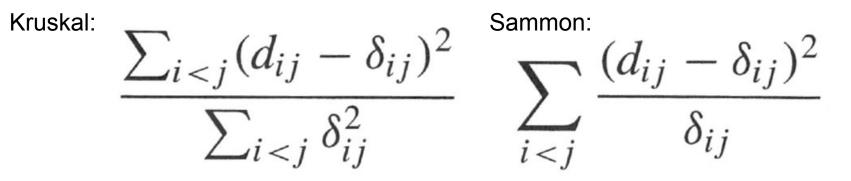
0.51	0.72	0.27	0.85	IMS
0.52	0.67	0.51	MODIS	
0.16	0.20	LSA SAF		
0.47	ECMWF			

HIRLAM


- This matrix includes all information from the comparisons, but can be cumbersome to interpret.
 - but there is a way to visualize this...

Multidimensional Scaling (MDS)?

source space


target space

Multidimensional Scaling (MDS)

- simple MDS with Euclidean distance (*Principal Coordinate Analysis*) is equal to *Principal Component Analysis* where only the first two components are plotted
- better results can be achieved using iterative methods (e.g., Kruskal's non-metric MDS, Sammon mapping)
 - minimize some cost function

Multidimensional Scaling (MDS)

- simple MDS with Euclidean distance (*Principal Coordinate Analysis*) is equal to *Principal Component Analysis* where only the first two components are plotted
- better results can be achieved using iterative methods (e.g., Kruskal's non-metric MDS, Sammon mapping)

Sammon:

• minimize some cost function

 $\sum_{i < j} (d_{ij} - \delta_{ij})^2$

 $\sum_{i < i}$

Kruskal:

How does MDS help us?

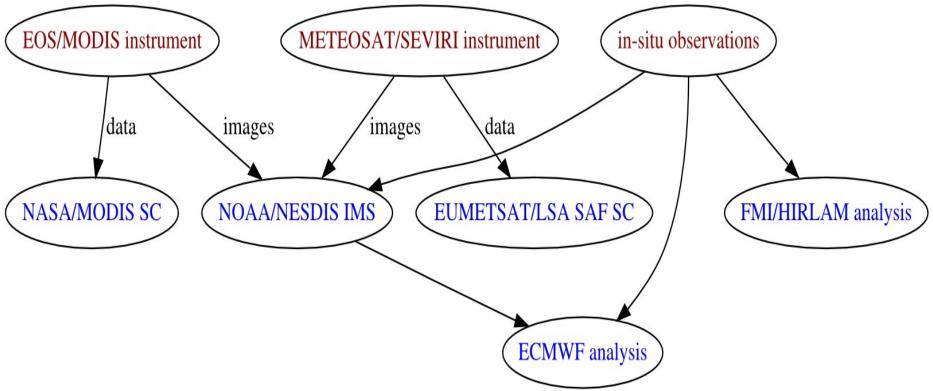
- To calculate MDS we need distances between data points, not the actual coordinates
- Can we use our verification matrix as a distance matrix? Yes!
 - But don't talk about distances but the dissimilarities...

Dissimilarities vs. distances

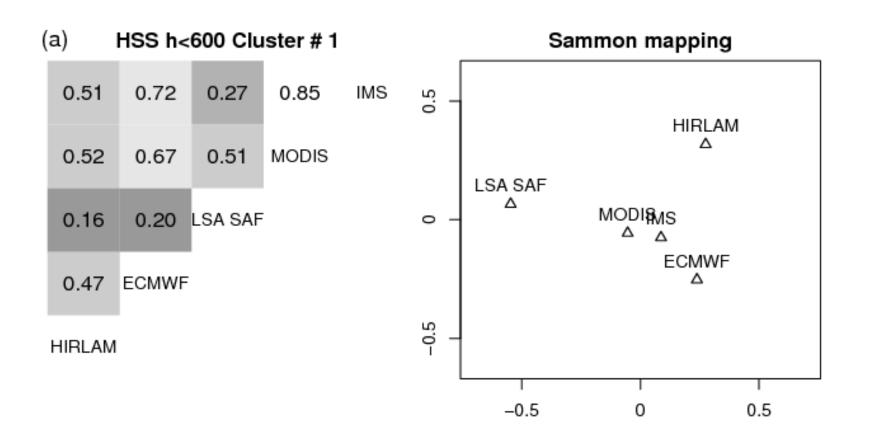
- dissimilarities have to satisfy
 - d(i,j) >= 0
 - d(i,i) = 0
 - d(i,j) = d(j,i) (sometimes not even this!)
- but not necessary (which genuine distances have to satisfy)
 - $d(i,j) \le d(i,h) + d(h,j)$

Some verification measures as dissimilarities

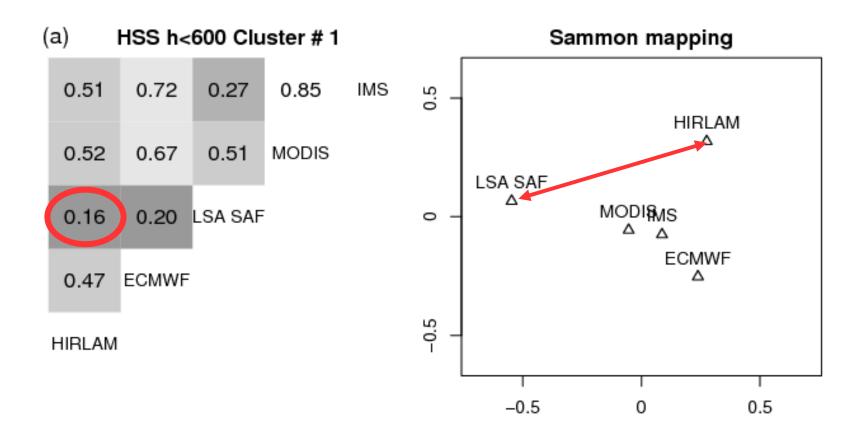
- (we use only verification measures for categorical variables)
- Measures known as dissimilarities in literature
 - Proportion Correct (the simple matching coefficient)
 - Critical Success Index (the Jaccard coefficient)
- Possible measures as dissimilarities
 - some Skill Scores (Heidke SS used in this study)
- Actually, we use 1-HSS, 1-PC, 1-CSI, etc.

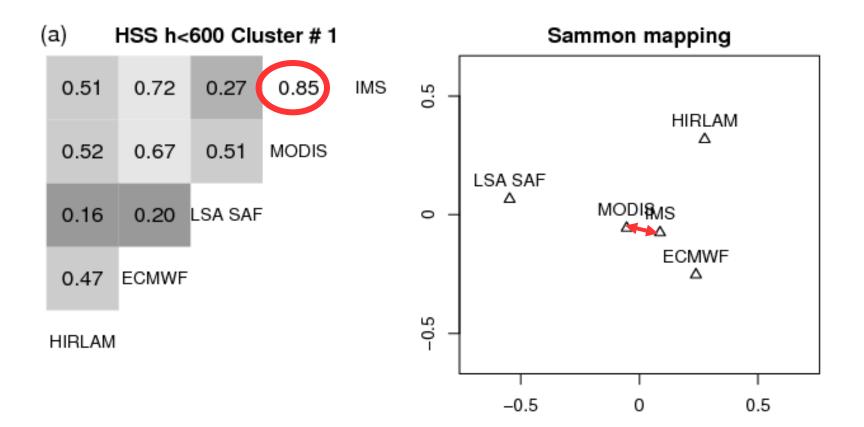

Our plan

- 1. calculate some verification measures
- 2. compose a matrix of measures
- 3. calculate the Sammon mapping
- 4. show the matrix and the Sammon mapping

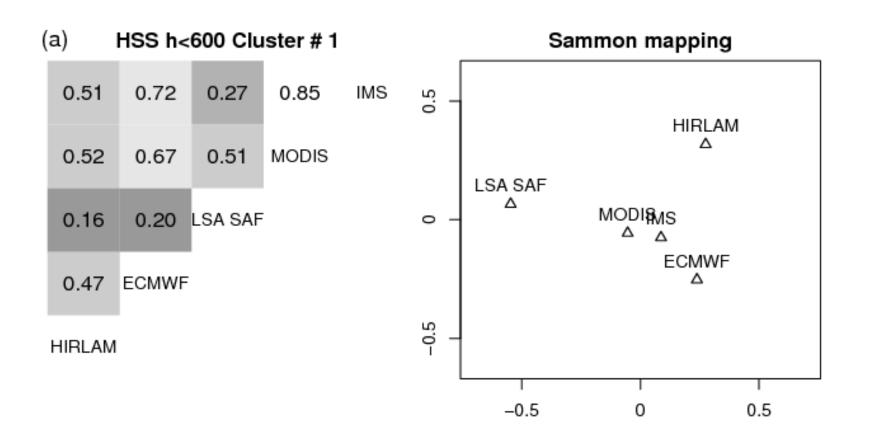

Case study of different snow analyses

no independent ground truth!


• data from January to June 2006, Northern Europe



Small HSS, large distance



Large HSS, small distance

Open questions

- how to assess the uncertainty in mapping (e.g., how to construct the confidence intervals)
 - hard to do with Sammon mapping
- how new data points can be added
 - hard to do with Sammon mapping
- what other verification measures are meaningful as dissimilarities

Conclusions

- a simple method for visualizing a comparison of different data sets, when none of them is the *truth*
- ... is still not perfect, and can be improved...

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

References

- More about our work in
 - Hyvärinen et. al. (2009) Comparison of snow cover from satellite and numerical weather prediction models in Northern Hemisphere and northern Europe. Journal of Applied Meteorology and Climatology, DOI: 10.1175/2008JAMC2069.1
- More about MDL in
 - Ripley (1996) Pattern Recognition and Neural Networks
 - Duda et. al. (2001) Pattern Classification. Second edition
 - Venables and Ripley (2002) *Modern Applied Statistics with S. Fourth Edition*
- More about dissimilarities in
 - Kaufman & Rousseeuw (1990) Finding Groups in Data