International Verification

D

- Justification:

Meteorological data are correlated both in space and time. To deal with these correlations, data is treated in blocks. Blocks consist of the entire estimate population over a given number of days. The bootstrap methods will randomly sample over the blocks.

- $\hat{F}=$ estimate of the probability distribution F, from the data set $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$
$\hat{F}^{1} \rightarrow\left(x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, \ldots, x_{n}^{1}\right) \quad x_{i}^{1}=$ set 1 of n members, some members $\hat{F}^{2} \rightarrow\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, \ldots, x_{n}^{2}\right) x_{i}^{2}=$ randomly 2 of n members, some members randomly appearing zero, once, twice, etc $\hat{F}^{3} \rightarrow\left(x_{1}^{3}, x_{2}^{3}, x_{3}^{3}, \ldots, x_{n}^{3}\right) x_{i}^{3}=$ set 3 of n members, some members randomly appearing zero, once, twice, etc
$\hat{F}^{k} \rightarrow\left(x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \ldots, x_{n}^{k}\right) x_{i}^{k}=$ set k of n members, some members randomly appearing zero, once, twice, etc

Effect with a

Ensemble mean of EPS vs Temperature radiosonde at 850 hPa , September $10^{\text {th }}, 2005$

$$
\begin{aligned}
& \text { (Candille G. et al: Verification of an Ensel } \\
& \text { Monthly weather review, 135, 2688-2699) }
\end{aligned}
$$

Conclusion:

- It is always essential to first visualize the data (quality control).
- Verify whether the errors fellow the expected distribution.
- The block bootstrapping is sensitive to the number of bootstrap (spatial correlation) and number of days (temporal correlation). Comparison of Fig. 3 and Fig. 8 shows that it is necessary to use a longer \imath for a longer forecast times.

