A scale-based distortion metric for mesoscale weather verification

Chermelle Engel^{1,2}

Todd Lane²

Australian Government

Bureau of Meteorology

Acknowledgements to: Beth Ebert, Alan Seed, and John Bally.

¹Center for Australian Weather and Climate Research ²Melbourne University, School of Earth Sciences

Talk Outline

- I) Set the scene for distortion metrics
- 2) Provide some background
- 3) Highlight assumptions
- 4) Describe new methodology
- 5) Show examples

Red – reference image Green – Image to be warped Yellow – Images Superimposed

Red – reference image Green – Image to be warped Yellow – Images Superimposed

Jan Kybic and Michael Unser, "Fast multidimensional elastic image registration", IEEE Transactions on Image Processing, 2003.

Reference

Image to be warped

(Kybic and Unser, 2003)

Red – reference image Green – Image to be warped Yellow – Images Superimposed

Superposition before Registration Superposition after

Deformation Matrix

Compare image before and after deformation, see if the difference has reached a minimum. If not, take another step

- Use displacement vectors to construct deformed grid locations
- Interpolate deformed image from original image using deformed grid locations

Instead of deforming the grid locations directly, approximate them using B-spline basis functions

Localization

Localization

• The size of the area (or scale of B-spline basis) is related to the scale of the displacements or deformations & localization

Localization

• The size of the area (or scale of B-spline basis) is related to the scale of the displacements or deformations & localization

• Can use a single area (or scale) size or a cascade of sizes, ranging from large-scale to smaller-scale.

E=
$$\frac{1}{\|I\|} \sum_{i \in I} (f_t^c(g(i)) - f_r(i))^2$$

where

$$g(\mathbf{x}) = \mathbf{x} + \sum_{j \in J} c_j \phi_j(x)$$

and

$$g(x) = x + \sum_{j \in J \subset (Z)^N} c_j \beta_{n_m} (x/h - j)$$

where

$$\beta_{n_m}(x)$$

where

$$g(\mathbf{x}) = \mathbf{x} + \sum_{j \in J} c_j \phi_j(x)$$

and

$$g(x) = x + \sum_{j \in J \subset (Z)^N} c_j \beta_{n_m} (x/h - j)$$

where

$$\beta_{n_m}(x)$$

E= $\frac{1}{\|I\|} \sum_{i \in I} (f_t^c(g(i))) - f_r(i))^2$

where

$$g(\mathbf{x}) = \mathbf{x} + \sum_{j \in J} c_j \phi_j(x)$$

and

$$g(x) = x + \sum_{j \in J \subset (Z)^N} c_j \beta_{n_m} (x/h - j)$$

where

$$\beta_{n_m}(x)$$

E= $\frac{1}{\|I\|} \sum_{i \in I} (f_t^c(g(i))) - f_r(i))^2$

where

$$g(\mathbf{x}) = \mathbf{x} + \sum_{j \in J} c_j \phi_j(x)$$

and

$$g(x) = x + \sum_{j \in J \subset (Z)^N} c_j \beta_{n_m} (x/h - j)$$

where

$$\beta_{n_m}(x)$$

E= $\frac{1}{\|I\|} \sum_{i \in I} (f_t^c(g(i))) - f_r(i))^2$

where

$$g(\mathbf{x}) = \mathbf{x} + \sum_{j \in J} c_j \phi_j(x)$$

and

$$\begin{split} g(x) &= x + \sum_{j \in J \subset (Z)^N} c_j \beta_{n_m} (x/h-j) \\ & \text{minimization control variables} \\ & \text{i.e. instead of x parameters, only need J.} \end{split}$$
 where
$$\beta_{n_m} (x)$$

where

$$g(\mathbf{x}) = \mathbf{x} + \sum_{j \in J} c_j \phi_j(x)$$

and

$$g(x) = x + \sum_{j \in J \subset (Z)^N} c_j \beta_{n_m}(x/h-j)$$

where $\beta_{n_m}(x)$

Assumptions in scheme

- 1. Amplitudes constant (*Intensity constraint*).
- 2. Phase correction (distortion) field smooth (implicit *smoothness constraint*)

Algorithm designed for one field of movement - cannot handle superimposed independent movement

How can we get around this?

Scale separation using characteristic scales

Assume that features will be relatively consistent with scale if not with placement.

Scale separation

(a) (a) large-scale (a) small-scale

Scale separation

(b) (b) large-scale (b) small-scale

Note: experiencing problems due to large displacement, and due to discontinuity in the field

Ultimate Aim

- Verification metric with three components:
- 1. Amplitude
- 2. Shift
- 3. Distortion

Red – reference grid Green – Warped grid

Further work

- Design metric based on deformation
- Deal with Unwanted Ripping/Folding of field
- Deal with Gibbs phenomena in cubic B-spline interpolation.
- Calibrate warping algorithm
- Scale separation:
 - Deal with Gibbs phenomena in wavelet decomposition
 - Define solution dependent upon input field

