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Talk Outline
1) Set the scene for distortion metrics

2) Provide some background

3) Highlight assumptions

4) Describe new methodology

5) Show examples
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Reference Image to be warped

Jan Kybic and Michael Unser, “Fast multidimensional elastic 
image registration”, IEEE Transactions on Image Processing, 
2003.



Superposition before 
Registration

Superposition after
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(Kybic and Unser, 2003)
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Deformation Matrix



• Use displacement vectors to construct deformed grid locations
• Interpolate deformed image from original image using deformed 

grid locations

Compare image before and after deformation, see if 
the difference has reached a minimum.  If not, take 

another step



Instead of deforming the grid locations directly, approximate them 
using B-spline basis functions



Localization



•  The size of the area (or scale of B-spline basis) is related to the 
scale of the displacements or deformations & localization
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•  The size of the area (or scale of B-spline basis) is related to the 
scale of the displacements or deformations & localization

Localization

•  Can use a single area (or scale) size or a cascade of sizes, 
ranging from large-scale to smaller-scale.  
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minimization control variables
i.e. instead of x parameters, only need J.
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Multi-resolutional (scaled) version of B-spline



Assumptions in scheme

1. Amplitudes constant (Intensity constraint).
2. Phase correction (distortion) field smooth (implicit 

smoothness constraint)

Algorithm designed for one field of movement - cannot 
handle superimposed independent movement



(a) (b)Example
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How can we get around 
this?

Scale separation using characteristic scales

Assume that features will be relatively 
consistent with scale if not with placement.



(a) large-scale (a) small-scale(a)
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Scale separation
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(b) large-scale (b) small-scale(b)

Scale separation



MSE (all)   1.37
MSE (where rain) 25.8forecast (raw) analysis

FORECAST (RAW) - ANALYSIS

Limitations of standard verification scores



forecast (moved) analysis
FORECAST (moved) - 

ANALYSIS

Mean Shift (degrees)
0.5°,- 0.5°

MSE (all)   0.11
MSE (where rain) 3.23

87.5% reduction in 
MSE (where rain)



Note: experiencing 
problems due to large 

displacement, and due to 
discontinuity in the field
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Ultimate Aim

• Verification metric with three components:
1. Amplitude
2. Shift
3. Distortion

23

Red – reference grid

 Green – Warped grid



Further work 
• Design metric based on deformation

• Deal with Unwanted Ripping/Folding of field

• Deal with Gibbs phenomena in cubic B-spline 
interpolation.

• Calibrate warping algorithm

• Scale separation:

• Deal with Gibbs phenomena in wavelet 
decomposition

• Define solution dependent upon input field
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