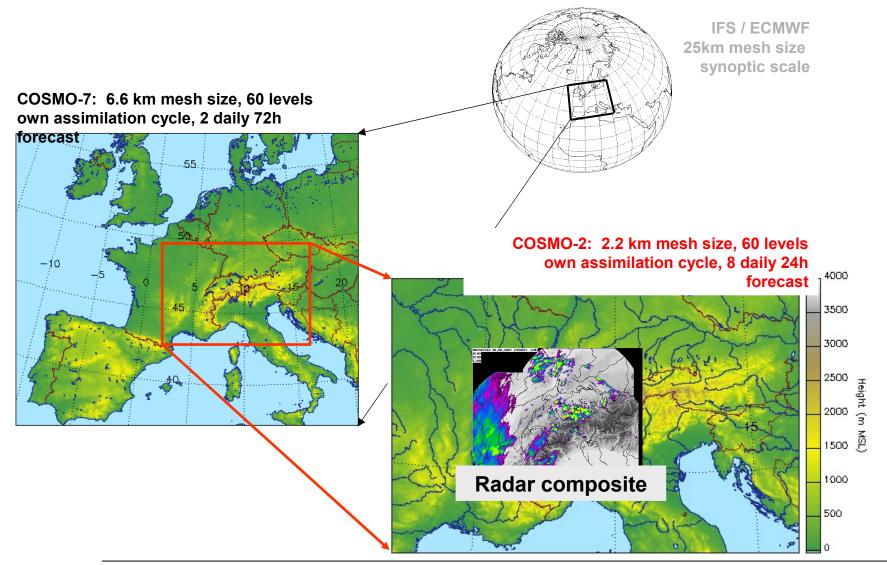


Verification of precipitation forecasts of the MAP D-PHASE data set with fuzzy methods

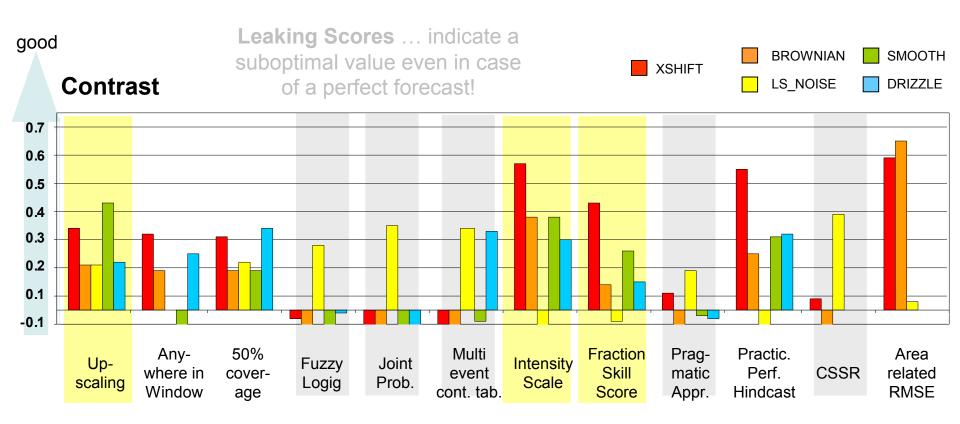
Tanja Weusthoff¹, Francis Schubiger¹, Felix Ament²

- ¹ Federal Office for Meteorology and Climatology, MeteoSwiss, Zurich
- ² University Hamburg, Germany

4th International Verification Methods Workshop, Helsinki, June 8 - 10, 2009


MAP D-PHASE

- Forecast Demonstration Project for MAP (Mesoscale Alpine Programme, WWRP RDP, 1999)
- 2nd WWRP Forecast Demonstration Project (FDP)
- Focus on heavy precipitation and flood forecasting
- D-PHASE: Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region
- D-PHASE Operations Period (DOP):
 June to November 2007 (COPS & "MAP season")
- 9 countries involved
- 30 atmospheric models / 7 hydrological models in over 40 catchments



The NWP system COSMO at MeteoSwiss

Fuzzy Verification: choice of the methods

- → Fractions Skill Score (FSS): shows good results, is widely used
- → Upscaling (UP): is sensitive to large-scale sample errors
- → Intensity scale (IS): promising method fast and able to detect the scales of spatially errors

T. Bähler and F. Ament

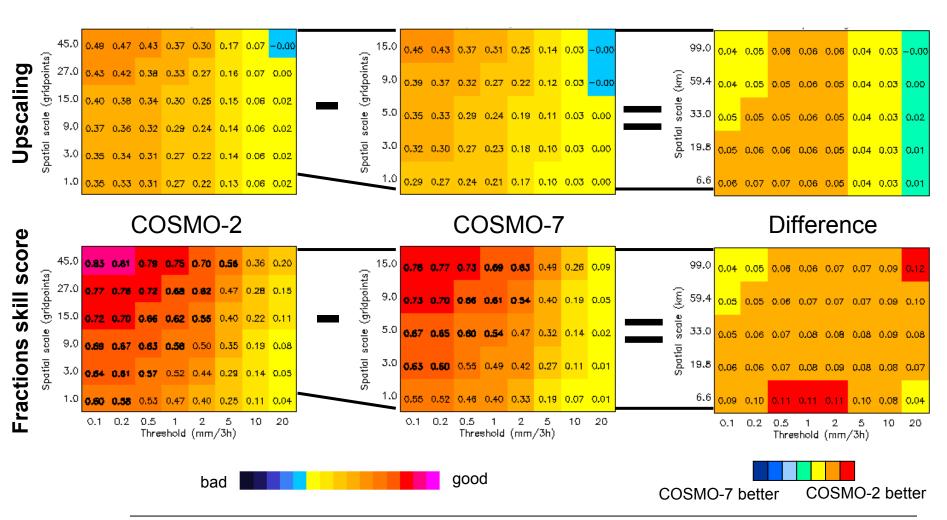
Fuzzy Verification: choice of the methods (2)

Verification on coarser scales than model scale:

"Do not require a point wise match!"

Method	Raw Data	Fuzzyfication	Score	Example result
Upscaling	X X X X X X X X X X X X X X X X X X X	Average	Equitable threat score ETS	Upscaling - ETS 41 0.34 0.34 0.34 0.30 0.25 0.21 0.07 -0.00 (still of 26 0.31 0.31 0.30 0.27 0.22 0.18 0.07 -0.00 0.01 0.25 0.20 0.16 0.05 0.01 0.05 0.01 0.25 0.26 0.25 0.20 0.16 0.05 0.01 0.25 0.26 0.25 0.22 0.17 0.14 0.05 0.01 0.26 0.25 0.26 0.25 0.27 0.14 0.05 0.01 0.15 0.26 0.25 0.26 0.25 0.26 0.27 0.14 0.05 0.01 0.16 0.25 0.26 0.25 0.26 0.25 0.27 0.17 0.14 0.05 0.01
Fractions Skill Score (Roberts and Lean, 2005)	X	Fractional coverage	Skill score with reference to worst forecast	Fractions skill score — FSS 41

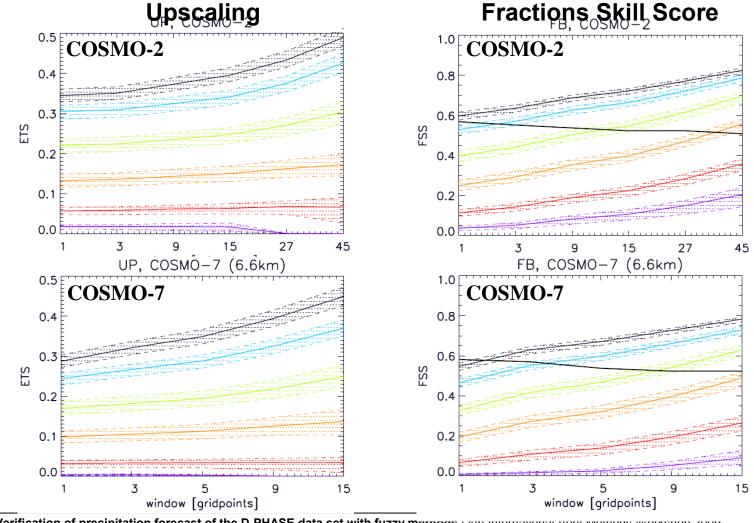
O


Settings for the fuzzy verification for the D-PHASE period: June – November 2007

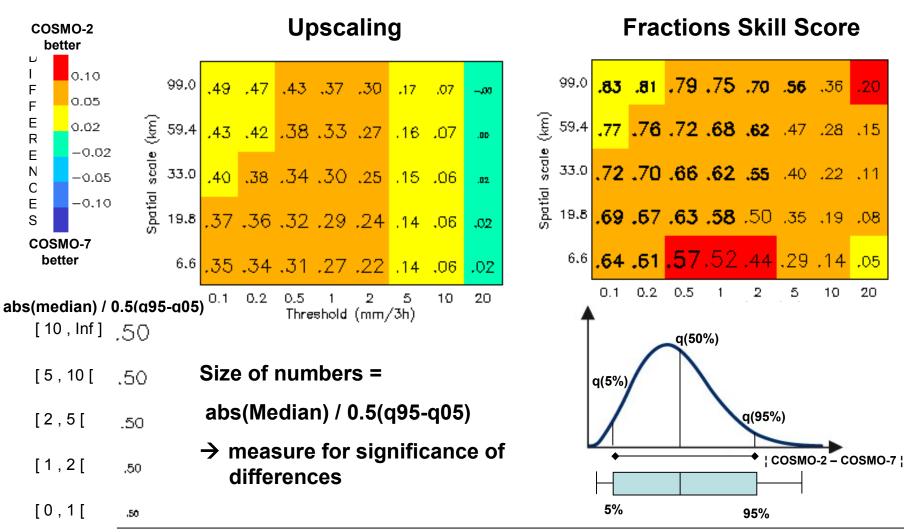
- **MODEL**: COSMO-2 (2.2km), COSMO-7 (6.6km)
 - 3h accumulations
 - COSMO-2: 8 fcst/day each with 3h-sums from +3 to +6h
 - COSMO-7: 2 fcst/day with four 3h-sums (+3..+6, +6..+9, +9..+12, and +12..+15h)
 - 24h accumulations
 - COSMO-2: 00 UTC runs with 24h-sums from +0 to +24h
 - COSMO-7: 00 UTC runs with 24h-sums from +0 to +24h
- OBSERVATIONS: Swiss Radar Composite over Switzerland (3 radars)
- METHODS: Upscaling and Fractions Skill Score with bootstrapping

Q

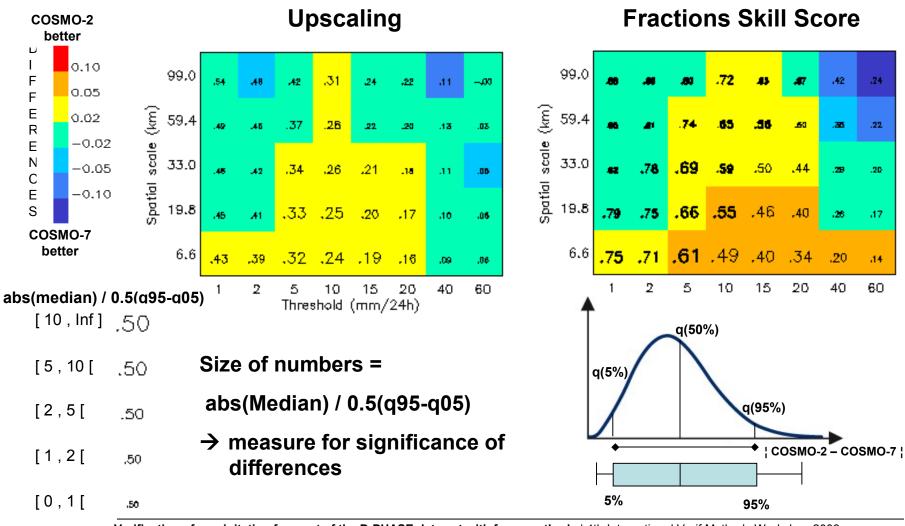
Upscaling and Fractions Skill Score


3 hourly accumulations

threshold [mm/3h]


Bootstrapping (nboot =100, [q95–q05] confidence interval) 3 hourly accumulations

Verification of precipitation forecast of the D-PHASE data set with fuzzy methods | 4th international verification of verification forecast of the D-PHASE data set with fuzzy methods | 4th international verification of precipitation forecast of the D-PHASE data set with fuzzy methods | 4th international verification of precipitation forecast of the D-PHASE data set with fuzzy methods | 4th international verification of precipitation forecast of the D-PHASE data set with fuzzy methods | 4th international verification of precipitation forecast of the D-PHASE data set with fuzzy methods | 4th international verification of precipitation forecast of the D-PHASE data set with fuzzy methods | 4th international verification of precipitation forecast of the D-PHASE data set with fuzzy methods | 4th international verification of precipitation forecast of the D-PHASE data set with fuzzy methods | 4th international verification of precipitation of precipit



Bootstrapping 3 hourly accumulations COSMO-2 [values]; COSMO-2 - COSMO-7 [colors]

Bootstrapping 24 hourly accumulations COSMO-2 [values]; COSMO-2 - COSMO-7 [colors]

O

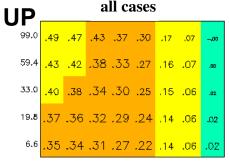
Sensitivities

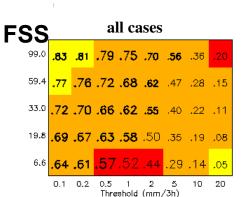
... model run

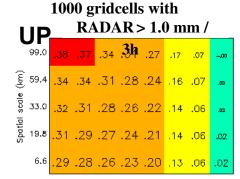
- using 00 and 12 UTC runs for both models (instead of 00,03,06,... for COSMO-2 and 00,12 for COSMO-7)
 - → higher update frequency of the COSMO-2 model has a **small impact** on the results: the differences between the models stay the same

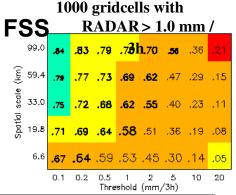
... rain amount

- rainy cases = cases with at least 1000 gridpoints with R_{obs} > 1.0mm / 3h
- similar changes in skill for both models, mainly for low thresholds and large windows:


Upscaling (UP): decrease in skill larger for COSMO-7


→ more pronounced differences


Fractions Skill Score (FSS): increase in skill


stronger for COSMO-7

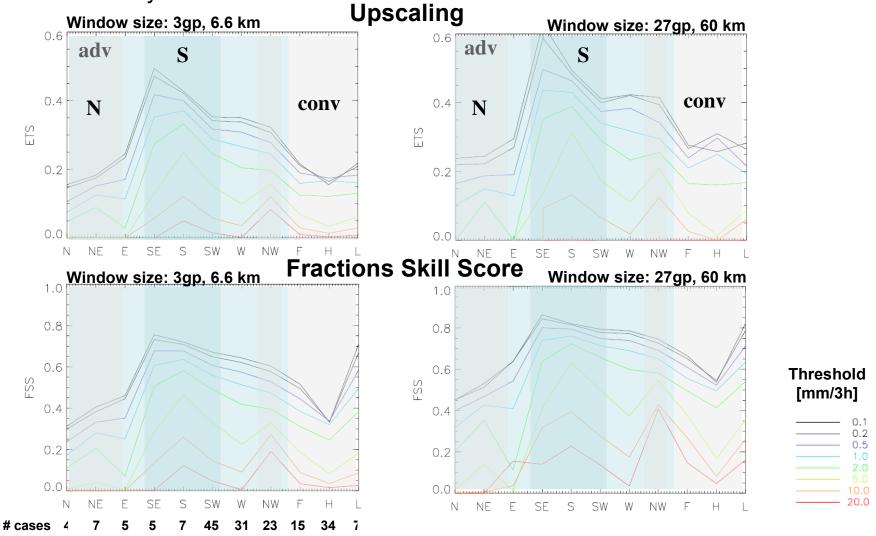
→ differences become smaller

11

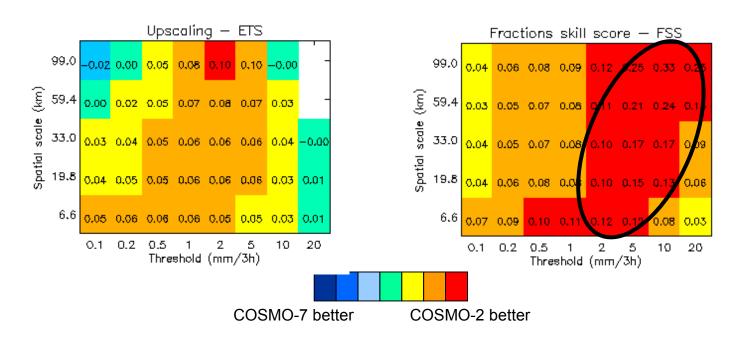
Verification of precipitation forecast of the D-PHASE data set with fuzzy methods | 4th International Verif Methods Workshop 2009

Tanja Weusthoff, Francis Schubiger, Felix Ament

V


Monthly values for COSMO-2

3 hourly accumulations **Upscaling** Window size: 27gp, 60 km Window size: 3gp, 6.6 km 0.6 0.4 0.4 ETS ETS 0.2 0.2 jun jul aug sep oct nov jun jul oct aug **Fractions Skill Score** Window size: 3gp, 6.6 km Window size: 27gp, 60 km 0.8 **Threshold** 0.6 0.6 [mm/3h] FSS 0.4 0.4 0.2 0.2 0.0 jun jul aug sep oct jun jul aug sep oct nov


Weather type verification (11 classes): COSMO-2

3 hourly accumulations

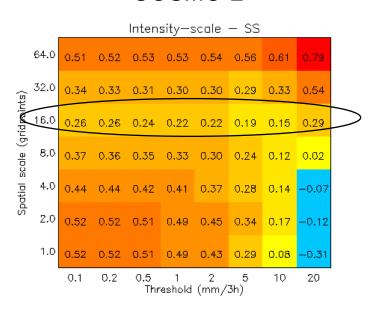
Weather type verification: Flat situations (15 cases) COSMO-2 – COSMO-7 for 3 hourly accumulations

- COSMO-2 has a clearly better skill (FSS) for large thresholds and large catchments
- airmass convection apparently quite well represented in COSMO-2

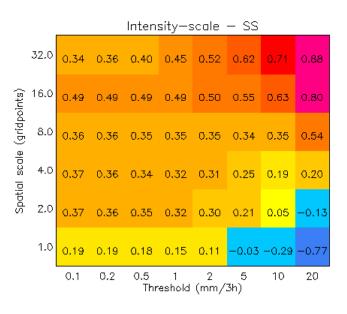
D

Summary fuzzy verification (precipitation) for the D-PHASE period (June – November 2007)

- for 3 h accumulations:
 COSMO-2 has better skill on nearly all scales
- the results are robust and the differences between the models are significant on most scales
- the conditional verification reveals differences between the weather types, skill relatively good for advective cases and southerly wind



Intensity Scale


3 hourly accumulations

COSMO-2

In COSMO-2 it seems to be a shift of about 16 gridpoints (?)

COSMO-7

O

Outlook fuzzy verification at MeteoSwiss

- Precipitation with the Swiss Radar Composite over Switzerland
 - Operational implementation for COSMO-2 and COSMO-7 in Autumn 2009 for:
 - Upscaling (with the scores: ETS and also FBI,FAR, POD)
 - Fractions Skill Score
 - Intensity Scale
 - Fuzzy verification with time windows
 - SAL(T) approach for river catchment verification
- Extension to other data sources:
 - Precipitation, mixing ratio, Θ, Θ_e, ... with VERA (Vienna Enhanced Resolution Analysis) for the D-PHASE/COPS dataset
 - Global radiation and cloudiness with EUMETSAT CM-SAF

Thank you!