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Abstract–A method for calculating the direction errors in lighting location systems is
developed. The method is restricted to smooth earth profiles and the conductivity of the
earth must be high. The latter condition is usually well satisfied. Some numerical results
are presented, too. It is found that the direction errors caused by local irregularities such
as ridges, hills and conductivity anomalies are small, less than 1 degree for earth profiles
typical for Southern Finland. 

1. INTRODUCTION

In this paper we develop a general approximate method for computing the electromagnetic
field of a lightning stroke in case of a non-planar inhomogeneous earth. The emphasis is
in the effect of the earth, so we use a simple dipole model for the source. The analytical
computations are performed in frequency domain, but obtaining numerical results in time
domain is also easy.
The application we have in mind is the location of a lightning flash by means of several
direction finder stations and the study of possible errors due to anomalies of the earth. A
typical direction finder has two vertical loop antennas, perpendicular to each other, that
measure the x and y components of the magnetic field. When a direction finder  observes
a lightning stroke, the  reported direction is perpendicular to the direction of the measured
horizontal magnetic field. The actual location of the stroke can be determined if at least
two direction finders report an observation. In principle, the method requires that the earth
is planar and homogeneous. It is our aim now to study direction errors caused by a non-
planar and inhomogeneous earth.
The essential quantities required to calculate the direction errors are the horizontal
derivatives of the vertical component of the electric field, since the horizontal components
of the electric field are negligible.



2. THEORY

2.1 APPROXIMATE BOUNDARY CONDITION FOR ∂Ez/∂z

Consider a slightly non-planar earth with a high conductivity (i.e. consider frequencies
such that σ >> ωε) that varies slightly in the horizontal direction. The symbols σ,ε,ω  and
µo denote the conductivity and permittivity of the earth, the angular frequency and the
vacuum permeability, respectively. Let us use a rectangular coordinate system (x,y,z)
(Fig. 1) with z-axis vertically upwards. Denote the surface of the earth by z = ζ(x,y). The
coordinate z is chosen so that ζ(x,y) < 0 for all x and y. Define the slopes of the earth
profile by

γ1 = 
∂ζ(x,y)

∂x
,        γ2 = 

∂ζ(x,y)
∂y

. (2.1.1)

It is assumed that |γ1|, |γ2| << 1, as is the case in a non-mountainous terrain. We will
perform all calculations to first order in γ1 and γ2. 
If the frequency is high enough, we can assume a source-independent surface impedance
when formulating the boundary conditions (Wait, 1980). The surface impedance η is
defined by the relation

Et = η H×n (2.1.2)

where Et is the tangential electric field, H is the magnetic field strength and n is a unit
vector normal to the surface of the earth. The quantity η is small compared to its vacuum
value ηo = µoc, and we will perform the calculations to first order in η, too. The vector n
points from the air towards the earth. To first order, it is given by

n = (γ1,γ2,-1). (2.1.3)

Utilizing the x and y components of the equation n×E = n×Et, where n×Et is obtained
from (2), we get

Ex = -ηHy - γ1Ez,      Ey = ηHx - γ2Ez (2.1.4)

(again, to first order in η and γ).
We are interested in the boundary conditions of ∂Ez/∂z on the surface z=0. Because this
surface is entirely in the air, which is assumed to be a vacuum, Maxwell's equations
assume the forms

∇⋅ E = 0,   ∇× E = −iωµoH,   ∇× H =iωεoE (2.1.5)

at z = 0. Using (4) and (5) we can calculate ∂Ez/∂z as follows:



∂Ez

∂z
 = − 

∂Ex

∂x
 − 

∂Ey

∂y

=  
∂
∂x

γ1Ez  + 
∂
∂y

γ2Ez  + η
∂Hy

∂x
 − 

∂Hx

∂y
 + Hy

∂η
∂x

 − Hx
∂η
∂y

      =  
∂
∂x

γ1Ez  + 
∂
∂y

γ2Ez  + iωεoηEz + 
∂η
∂x

i
µoω

∇× E
y
 − 

∂η
∂y

i
µoω

∇× E
x

(2.1.6)

To first order we have

∇× E y = ∂zEx − ∂xEz ≈ − ∂xEz

∇× E x = ∂yEz − ∂zEy ≈ ∂yEz   
(2.1.7)

because for example the term ∂zEx can be calculated from Eqs. (4) and (5) as

∂zEx = –η∂yHz – iωεoηEx – γ1∂zEz (2.1.8)

and all terms on the right-hand-side of Eq.(8) are second order. Substituting (7) to (6) we
thus obtain  the result

∂Ez

∂z
=  

∂
∂x

γ1Ez  + 
∂
∂y

γ2Ez  + iωεoηEz − i
ωµo

∂η
∂x

 
∂Ez

∂x
 − 

∂η
∂y

 
∂Ez

∂y
 , z=0 (2.1.9)

This result has the following very useful property: its right-hand-side contains only Ez
and its horizontal derivatives. This equation is equivalent to Wait's result (Wait, 1964,
appendix, Eq. 18) if we replace ∂Ez/∂x and  ∂Ez/∂y by -ikoxEz and -ikoyEz,
respectively. This is permissible within our approximation but not necessary, so we leave
Eq. (8) as it stands.
Within our approximation, we can calculate the surface impedance η from the formula

η = i ηo ko
k

(2.1.10)

 (Wait, 1964) where ko = ω/c and k is the (possibly coordinate dependent) propagation
constant of the earth:

k = ω2µoε – iωµoσ (2.1.11)

Now the surface impedance is assumed to be independent of the source field; Eq. (9) can
be derived e.g. by calculating the surface impedance according to Eq. (2) using a plane
wave source model and homogeneous earth. 

2.2 APPROXIMATE INTEGRAL EQUATION FOR Ez



To be able to use Eq. (2.1.9), we shall derive an integral equation for Ez on the plane
z=0. We use Green's theorem, valid for all functions Φ and Ψ:

dx
V

Φ∇ 2Ψ − Ψ∇ 2Φ  = dS
∂V

Φ∂Ψ
∂n

 − Ψ∂Φ
∂n

(2.2.1)

The vector potential A in the Coulomb (or Lorentz) gauge satisfies the equation

− ∇ 2
 + ko

2 A x  = µojo x (2.2.2)

where x∈ V and V is entirely within a vacuum. Here, jo is the primary current density,
which is assumed to be a vertical dipole in this paper. We introduce Green's function

G(R) ≡ 1
4π

 e
-ikoR

R
(2.2.3)

which satisfies

− ∇ 2
 + ko

2 G(x-x ') = δ(x-x') (2.2.4)

Using Eqs. (1) - (4) it is easy to derive the following formula (recall E = -iωA) 

E(x) = Eo(x) + dS'
∂V

G(x-x ')
∂

∂n'
 E(x') − E(x')

∂
∂n'

 G(x-x ') (2.2.5)

which is valid if x∈ V and if V is entirely within a vacuum. The field Eo(x) is the primary
field, defined by

Eo(x) = – iωµo dx ' G(x–x ') jo(x ')
V

(2.2.6)

Taking V = {(x,y,z)| z≥0}, evaluating (5) at the point x = (x,y,z) and taking the limit
z→0+ we obtain (the notation f(x,y) means f(x,y,0) for any f)

Ez(x,y) = Ez0(x,y) − dx'dy' G(x-x',y-y') 
∂Ez

∂z'
(x',y',z')

z'=0
 + R(x,y) (2.2.7)

where we have defined



R(x,y) ≡ limz→0+ dx'dy' Ez(x',y') 
∂

∂z'
 G(x-x',y-y',z-z')  

z'=0
(2.2.8)

The calculation of R(x,y) (Appendix) yields the result

R(x,y) = 1
2

 Ez(x,y) (2.2.9)

whence we obtain

Ez(x,y) = 2Ez0(x,y) − 2 dx'dy' G(x-x',y-y') 
∂Ez

∂z'
(x',y',z')

z'=0
. (2.2.10)

The first term in the right-hand-side represents the direct term plus an image term. The
bracket expression is to be substituted from Eq. (2.1.9). The integral term vanishes for a
perfectly conducting planar earth, because then all terms on the right-hand-side of Eq.
(2.1.9) are zero.  In principle, (10) is an integral equation for Ez but, in accordance with

our earlier approximations (nearly planar earth, high conductivity), we will replace Ez by

2Ez0 in the integral term, i.e. we will use the Born approximation. Thus we obtain a

scheme for calculating values of Ez(x,y) for any electric structure of the earth by doing a

two dimensional numerical integration over x' and y' for each point (x,y). According to
Wait (1964, appendix), the expansion can also be carried out in such a way that the
unperturbed situation is a planar earth with a constant high (but finite) conductivity.

3. APPLICATIONS

3.1 DIRECTION ERRORS

The direction vector reported by a direction finder is (modulo 180o) proportional to
(∂xEz, ∂yEz) in our approximation (see Eqs. (2.1.7) and (2.1.8)). This is fine as long as

Ez is real, but as soon as Ez has an imaginary part, we have two vectors (∂xRe Ez, ∂yRe

Ez) and (∂xIm Ez, ∂yIm Ez) with possibly different directions. Explicitly: the physical

direction at any instant is in case of a harmonic time dependence

∇  Re Ezeiωt  = cos ωt ∇  Re Ez − sin ωt ∇  Im Ez (3.1.1)

so that the measured direction oscillates between two, generally unequal, directions. If
e.g. |∇ Re Ez| » |∇ Im Ez|, the oscillation is such that the Re-direction dominates almost all
the time. In case of a non-harmonic time dependence, the measured direction fluctuates
between these two directions during the pulse, depending in a complicated way on both



the time dependence of the pulse and the relative magnitudes of the quantities ∇ Re Ez and
∇ Im Ez.
Let us consider the situation in greater detail in case of a harmonic time dependence.
Introduce the shorthand notations r = ∇  Re(Ezeiωt),  a = ∇ Re Ez, b = –∇ Im Ez. Eq.
(1) is then rewritten as

r(t) = a cos ωt + b sin ωt (3.1.2)

which is the equation of an ellipse in the xy-plane (Fig. 2) with the major and minor axes
r± given by

r± = 1
2

a2 + b2  ± 1
2

a2 – b2 2 + 4 a ⋅b 2 1/2
(3.1.3)

The direction θο of the major axis (the angle between x-axis and the major axis) is given
modulo π/2 by

θo = 1
2

 arctan a2 sin 2θa + b2 sin 2θb

a2 cos 2θa + b2 cos 2θb

(3.1.4a)

where θa and θb are the direction angles of a and b , respectively. We need θο
determined modulo π. The ambiguity introduced by Eq. (4a) is resolved be requiring that

a2cos 2 θo–θa  + b2cos 2 θo–θb  > 0. (3.1.4b)

The relations (4a) and (4b) can be obtained by maximizing r(t)2 with respect to t.
The probability density that the observed angle is θ at an arbitrary instant of time is

P θ  = 1
π

 
ab sin θa– θb

a2 sin2(θ–θa) + b2 sin2(θ–θb)
. (3.1.5)

P(θ) is by definition proportional to dt/dθ, where the function t(θ) is defined by Eq. (2).
It is normalized to unity on an interval of length π. P(θ) has a maximum at θ = θο, so we
will interpret θo as the direction reported by the direction finder. If |θa - θb| ‹‹ 1, as is the
case if our approximations are valid at all, the peak P(θ) can be approximated by the
Lorentzian shape function

P(θ) ≈  1
π

 
ab θa–θb

a2 θ–θa
2
 + b2 θ–θb

2
 , θ  close to θa, θb. (3.1.6)

In this approximation, the direction of the major axis becomes



θo ≈ a
2θa + b2θb

a2 + b2
 . (3.1.7)

A useful measure for the peak width is the width ∆θ at the half-maximum, defined by
P(θo+∆θ) = P(θo)/2:

∆θ ≈ 
abθa–θb

a2 + b2
(3.1.8)

We call ∆θ the fluctuation angle, since it is related to the practically intractable changes of
the observed direction as a function of time (which is rotation around the fluctuation
ellipse in case of a harmonic time dependence). The difference between the average
observed angle θo and the direction angle θlin of a straight line connecting the point of
observation to the point just below the source is called the (systematic) error angle θerr =
|θo–θlin| (cf. Fig. 3). 

3.2 NUMERICAL RESULTS IN FREQUENCY DOMAIN

Three models are studied now. The frequency is always set equal to 100 kHz and the
height of the source dipole to 300 m. The  source current Io is 100 kA. 

Model 1 is a symmetric Gaussian hill of 100 m height. The earth profile is thus

ζ(x,y) = (100 m) exp – 
x2 + y2

W2
  – 100 m (3.2.1)

The constant 100 m is subtracted to meet the requirement ζ(x,y) ≤ 0. It does not affect the
results, because only the derivatives of the earth profile appear in the equations. The earth
is assumed to be an ideal conductor. The calculation is performed using the values 1 km
and 2 km for the width W. 
Model 2 is a Gaussian ridge with a profile function

ζ(x,y) = H exp – x2

30 km 2
  – 

y2

W2
 – H (3.2.2)

The height H is 50 m or 100 m and the width W is one of the values 0.7 km, 1 km, 1.5
km and 2 km.
Model 3 is a Gaussian conductivity and permittivity anomaly of the form

σ(x,y) = σo exp  
x2 + y2

3 km 2



ε(x,y) = εo 1 + 80 exp  – 
x2 + y2

3 km 2
(3.2.3)

with σo = 0.05 1/(Ω m).

The error angle and the fluctuation angle are calculated on a rectangular mesh in the xy-
plane, with -30 km < x,y < 30 km. The number of mesh points is 400. The results are
plotted as a three-dimensional surface plot, where the height of the surface corresponds to
the absolute magnitude of the fluctuation or error angle. Unless explicitly mentioned, the
stroke point is (x = -4 km, y = 3.6 km).
Table 1 summarizes the parameters used in computations. The results are presented in
Figs. 4-7.
In model 1 (Figs. 4-5) we see that the systematic and fluctuation errors have roughly the

same magnitude which is less than 0.1o outside the anomaly (the peaks at the center of the
figure). Fig. 4 suggests that the errors are largest in sectors that lie approximately
perpendicular to a straight line between the stroke and the anomaly region. This is not
quite true in Fig. 5 (Fig. 5 is the same as Fig. 4 except that the stroke point is farther and

that the hill is larger), where it can be seen that these "sectors" tend at an angle of 90o to
each other. It is interesting to note that the interference pattern can change drastically if a
couple of parameters are changed. In any case, the magnitude of the errors is probably too
small to have any practical significance in model 1.
Going on to model 2 (Figs. 6-7), it is found that the magnitudes of the errors are
somewhat larger than in model 1. Also, because of the different shape of the anomaly, the
regions of higher errors are somewhat modified. The magnitudes of the errors are

approaching experimental limits: a (systematic) error of 1o causes the stroke to be
mislocated by nearly 2 km if the stroke is 100 km apart. It would be, of course,
interesting to study even higher ridges and find out when the effects become large. The
assumptions behind our approximations, however, do not permit this. In particular, the
Born approximation for the solution of the integral equation might no longer be valid.
Dropping the Born approximation would lead to very serious numerical difficulties:

inverting even a sparse N2xN2 matrix (to solve a two-dimensional integral equation
directly) where N is about 100 (the number of spatial mesh points) is a formidable task. 
Fig. 8 displays the attenuation of the field magnitude for run 5 (cf. Table 1). In order for
our approximations to be valid, this quantity must be <<1 everywhere.
Finally, in Fig. 9 we see the results for a conductivity/permittivity anomaly (model 3). In
this model, the errors are very small.



3.3 NUMERICAL RESULTS IN TIME DOMAIN

It is straightforward to obtain results in the time domain by performing the above
calculations with many values of ω and using a discrete Fourier transformation. The
calculations are about 256 time as laborious as in the frequency domain since we used a
256-point Fourier transform. Because of this, only one preliminary example of time
domain calculations is presented in this paper. We use a simple Gaussian time dependence
for the source:

f t  = exp – t
τ

2
(3.3.1)

with the risetime τ = 3.9 µs. Eq. (1) is plotted in Fig. 10, with the time axis shifted for
convenience. This model does not describe well the actual time dependence of a lightning
stroke, but we are mainly interested in the rising part, i.e. the range –τ < t < 0 or so in Eq.
(1), because it is known that the direction finders take the most information during this
time. The usual double-exponential form for the pulse (e.g. Uman and McLain, 1969,
LeVine and Meneghini, 1978) is not suitable because it yields to a dipole moment which
does not vanish when t -> ∞. 
Fig. 11 displays the horizontal components of the magnetic field as functions of time. The
coordinates of the stroke and the observation point are (x = -32.5 km, y = 23 km) and (x
= 86 km, y = -32 km), respectively. We use a Gaussian ridge of length 25 km, width 1
km and height 100 m (i.e. the earth profile function is given by Eq. (3.2.2) where H and
W are replaced by 100 m and 1 km, respectively, and the value 30 km in the denominator
is replaced by 25 km). Because of retardation effects, the time axis is not directly
comparable to Fig. 10.  Fig. 12 displays the fluctuation of the observed direction,which is
assumed to be perpendicular to the momentary horizontal magnetic field, as a function of
time. The time axis is comparable to Fig. 11.
It is seen from Fig. (12) that the fluctuation in the direction depends crucially on the
absolute magnitude of the magnetic field: when the field is weak, the fluctuation is large
(several degrees) and vice versa. This implies that the direction finder should extract its
direction information at the high-field phases of the pulse to give accurate direction
estimates. The low-field phases can still be used to reject pulses emitted by cloud-to-cloud
discharges and other unwanted sources of pulses.

4. CONCLUSIONS

The theory presented in this paper shows that we can calculate numerically the direction
errors for any earth profile and for any conductivity/permittivity distribution, as far as the
profile is smooth and gently sloping (in the sense γ1, γ2 << 1) and the conductivity is
large (in the sense σ >> ωε). Removing either or both of these assumptions would lead to
much more difficult calculations, almost impossible in practice.



The numerical results show that hills and conductivity/permittivity anomalies  produce

only relatively small direction errors (usually much less than 1o). The sharp peaks present
in some of the figures are located at the anomalies themselves. Our calculation need not be
reliable there, but the peaks indicate the importance of placing direction finders in locally
homogeneous and flat areas, an experimentally well-known fact. The earth profiles used
in the calculations are typical to Southern Finland. Studying more severe anomalies is not
possible due to our approximations. Systematic and fluctuation errors are usually of the
same magnitude; sometimes the fluctuation error is somewhat larger. The errors depend
very much on the direction. Although the anomalies studied here sometimes change the
field magnitudes by more than ten percent, the direction errors remain small, usually less
than one degree. 
Following is a list of parameters whose effect need to be studied:

- the location of the observer (well studied)
- the frequency (not studied, one value used)
- the height of the source dipole (not studied, one value used)
- the location of the source (studied in case of a ridge)
- the type of the anomaly: conductivity, permittivity, or earth profile (partly studied)
- the "strength" of the anomaly, e.g. the absolute height and the slopes of the hill

(partly studied: slope is more important than height)
- numerical parameters: integration mesh (studied though not documented here)

It is clear that because of numerous parameters involved, the subject is still open for
future research.
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APPENDIX: Derivation of result (2.2.9)

Consider the integral

R(x,y,z) ≡ dx'dy' Ez(x',y') 
∂

∂z'
 G(x-x',y-y',z-z')  

z'=0
(A.1)

Using (2.2.3), this can be rewritten as

R(x,y,z) = z dx'dy' Ez(x',y') (1 + ikoR)
G(R)

R2
R = x-x' 2 + y-y' 2 + z2

(A.2)

Make the following change of variables:

x' = x + z u cos ϕ
y' = y + z u sin ϕ (A.3)

so that (A.2) becomes

R(x,y,z) = z3 du u 
0

∞

dϕ
0

2π

 Ez(x+zu cos ϕ,y+zu sin ϕ)(1+ikoz 1+u2)
G(z 1+u2)

z2(1+u2)

(A.4)

Passing to the limit z→0+ we obtain

R(x,y) = 1
2

 Ez(x,y)  
0

∞
du u

1+u2 3/2
= 1

2
 Ez(x,y) (A.5)

as stated in the text.


