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Abstract

An approximate Riemann solver of Godunov type for ideal relativis-

tic magnetohydrodynamic equations (RMHD) named as HLLC (“C”

denotes contact) is developed. In HLLC the Riemann fan is approxi-

mated by two intermediate states, which are separated by the entropy

wave. Numerical tests show that HLLC resolves contact discontinuity

more accurately than the Harten-Lax-van Leer (HLL) method and an

isolated contact discontinuity exactly.

1 Introduction

Since the complexity of the special relativistic ideal magnetohydrodynamics

(RMHD), numerical simulations are usually the only means to study the rich

structure of their solutions. The RMHD has been made use of in many astro-

physical phenomena, for instance those involving relativistic jets, which have

been recently started to study by numerical simulations [12].

There are several requirements for the numerical simulation in general such

as accuracy, robustness and computational efficiency and several different ap-

proaches has been developed in order to fulfill them in the most succesful way.

The approximate Riemann solvers of Godunov type have proven to be applica-

ble in MHD and RMHD simulations. Among them is the HLL solver and the

HLLC solver [7, 6, 3, 11]. The latter has recently been applied succesfully to

RHD and RMHD even including higher order multidimensional cases [13, 14].

Our goal is to find a conservative and positive solver with minimum dif-

fusion which would still be fast enough. Positivity means that the solver

maintains the condition ρ ≥ 0, p ≥ 0. One way to achieve these goals, which is

followed here, is to add gradually intermediate states to HLL which has one in-

termediate state [15]. In this paper a HLLC solver containing two intermediate
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states is introduced for RMHD equations and it is shown by numerical exam-

ples that it resolves contact wave more accurately than the HLL method. The

scheme presented here differs from [14] and the differences will be discussed in

the Summary.

2 Theory

2.1 RMHD equations

The ideal special relativistic magnetohydrodynamical equations (RMHD) [1,

5, 8] are

the conservation of mass
∂

∂xα
(ρuα) = 0, (1)

the conservation of energy-momentum
∂

∂xα
(Tαβ

FL + Tαβ
EM) = 0, (2)

the Maxwell equations
∂

∂xα
(uαbβ − bαuβ) = 0, (3)

together with the state equation in the form e = e(p, ρ). We are using

the γ − law equation of state

e = ρc2 + p/(γ − 1). (4)

Greek indices range over 0, 1, 2, 3 and Latin indices over 1, 2, 3, where 0 is indi-

cating the time component and 1, 2, 3 the space components. In the equations

xα = (ct, xj) is the four vector of space-time coordinates, Γ = (1 − v2/c2)−1/2

is the Lorentz factor, uα = (Γc, Γvj) is the four velocity, γ is the polytropic

(adiabatic) index and

bα = (Γ(~v/c · ~B), Bj/Γ + Γ(~v/c · ~B)vj/c) (5)

is the magnetic induction four vector. The energy-momentum tensor for rela-

tivistic ideal fluid is

Tαβ
FL = (e + p)uαuβ/c2 + pgαβ, (6)

where gαβ = diag(−1, 1, 1, 1) is the Minkowski metric tensor. The electromag-

netic energy-momentum tensor is

Tαβ
EM = ǫ0F

α
γ F βγ −

ǫ0

4
gαβFγδF

γδ, (7)
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where Fαβ is the electromagnetic field tensor, which in the ideal infinite con-

ductivity approximation ~E = ~B × ~v becomes

Fαβ = ǫγδαβbγuβ, (8)

where ǫ is the Levi-Civita permutation symbol.

RMHD equations written out explicitly in the usual 1+3 conservative form are

∂U

∂t
+

3
∑

i=1

∂Fi(U)

∂xi

= 0, (9)

U ≡











D
~k

E
~B











=











Γρ

Γ2(e + p)~v/c2 + ~S/c2

Γ2(e + p) − p + eA

~B











, (10)

Fi =











Γρvi
Γ2

c2
(e + p)vi~v + p

∑

3

j=1
δij~ej + ~PA

i

Γ2(e + p)vi + ~S

vi
~B − Bi~v,











(11)

where

~S =
1

µ0

(~E × ~B), (12)

~E = ~B × ~v, (13)

eA =
1

2µ0

(B2 +
1

c2
E2), (14)

~PA
i = eA

3
∑

j=1

δij~ej −
1

µ0

Bi
~B −

1

µ0c2
Ei

~E . (15)

Here U = (D,~k,E, ~B) is the 8-vector of conserved variables mass-, momentum-

and energy density and magnetic field and Fi is the 8-vector of corresponding

fluxes. We introduce also the vector of primitive variables W = (ρ,~v, p, ~B)

where ρ is mass density, ~v velocity and p pressure. The numerical discretization

below uses the RMHD equations in the form (9).

2.2 Numerical method

RMHD equations like MHD have seven eigenvalues which correspond to en-

tropy wave, two Alfvén waves and four (slow/fast) magnetosonic waves. A

solution of the Riemann problem may include shock-, rarefaction-, compound-

and overcompressible shock waves. Let us consider the one-dimensional case
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from now on (F ≡ Fx). The numerical solution of the Riemann problem can

be written in conservative form

Un+1

i = Un
i −

∆t

∆x

(

Fnum(Un
i , Un

i+1) − Fnum(Un
i−1, U

n
i )

)

, (16)

where Fnum is the numerical flux function, n refer to time step and i to cell

number. Note that the flux Fi is given in (11) as a function of primitive vari-

ables: U = m(W ) where m is the mapping defined by (10). That means that

the inverse map U 7→ m−1(U) = W should be determined, because the time

stepping process (16) produces next time level for the conservative variables

not the primitive ones. The detailed description of the inverse mapping is

given in [5]. Here we repeat some of the key points. The primitive variables

can be written

ρ = D
√

1 − v2/c2, p = ((1 − v2/c2)Hc2 − ρc2)/γ1,

~v =
1

H + ǫ0B2
(~k + (~k · ~B)ǫ0

~B/H), (17)

where H = Γ2(ρ + γ1p/c
2) and γ1 = γ/(γ − 1). In (17) the primitive variables

are functions of U , v2 and H and thus we require two more equations to express

v2 and H in terms of U . These are obtained from the energy and momentum

density definitions (10). The momentum squared is

H2v2 + (2H + ǫ0B
2)(ǫ0B

2v2 − (~k · ~B)2/H2)/(H + ǫ0B
2)2 − k2 = 0 (18)

and the equation for the energy density can be put into the form

(

(1 −
1 − v2/c2

γ1

)Hc2 − E + Dc2
√

1 − v2/c2/γ1 +
B2

µ0

)

(H + ǫB2)2 +

ǫ0(B
2k2 − (~k · B)2)/2 = 0, (19)

The equation (19) is a third order polynomial equation for H so it can be

solved analytically. It appears that all the roots are real and the correct one

is the largest one. The root is substituted in (18) and we get equations of the

form

F(ζ) = 0,
dF(ζ)

dζ
= 0, ζ ≡ v2, (20)

from which v2 is solved numerically by Newton’s method. Therefore we know

both v2 and H as a function of conservative variables and the primitive vari-

ables as functions of the conservative variables can be solved from (17). Thus

the inverse mapping U 7→ m−1(U) = W has been determined.

In a two-state approximate Riemann solver (HLLC) [7, 6] the Riemann fan

is approximated by two intermediate states U∗

L,R, which are separated by the
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line dx/dt = SM , where SM is the eigenvalue of the entropy wave in RMHD.

The numerical flux function becomes

Fnum ≡ FHLLC =



















FL, SL > 0,

F ∗

L, SL ≤ 0 ≤ SM ,

F ∗

R, SM ≤ 0 ≤ SR,

FR SR < 0,

(21)

where SL,R are the minimum and maximum signal speeds in the system, which

in ideal RMHD are the speeds of magnetosonic waves λ1,7 (λ1 < λ7). They

can be solved analytically from the quartic equation

(1 − ǫ2)(u0λ − ux)4 + (1 − λ2)(c2

s(b̃
0λ − b̃x)2 − ǫ2(u0λ − ux)2) = 0, (22)

where cs = (γp/w)1/2 is the sound speed, b̃α = bα/(wtot)
1/2, wtot = w + bαbα

and w = e + p is the enthalpy. After λ1,7 are solved from (22) the speeds SL,R

are calculated in the numerical code as in [4]

SL = min(λ1(UL), λ1(UR)), SR = max(λ7(UL), λ7(UR)). (23)

Another possibility is to define SL = −c, SR = c, but this adds diffusion to the

solution.

Now we need to define the fluxes F ∗

L,R. The integral form of the conservative

equations (9) is

∫ x2

x1

U(x, t2)dx−

∫ x2

x1

U(x, t1)dx +

∫ t2

t1

F (U(x2, t))dt−

∫ t2

t1

F (U(x1, t))dt = 0.

(24)

By choosing different values for (x1,2, t1,2) the Rankine-Hugoniot jump condi-

tions across the SL, SM and SR waves are derived

Sα(U∗

α − Uα) = F ∗

α − Fα, α = L,R, (25)

SM(U∗

R − U∗

L) = F ∗

R − F ∗

L. (26)

It would seem natural to define F ∗

α ≡ F (U∗

α), but then the flux would not be

consistent with the conservation law over the rectangle (i − 1

2
, i) × (0, ∆t) [3].

i) Bx 6= 0

We use the knowledge that the jump condition over the entropy wave SM

(26) leads to the following relations when Bx 6= 0 [1, 8]

ρ∗

L 6≡ ρ∗

R, v∗

iL = v∗

iR, p∗L = p∗R, B∗

iL = B∗

iR, i = x, y, z. (27)

Let us construct a two-state solver [6] so that the intermediate states partly

correspond to the single-state HLL fluxes in order to satisfy (27). First we
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define SM = v∗

xα = v∗

x (α = L,R) as it was also done in [16, 3, 15, 6] and

furthermore

v∗

iα = v∗

i , (28)

p∗α = p∗, (29)

B∗

iα = B∗

i , i = x, y, z. (30)

From (26),(28) it follows

ρ∗

α =
Γρα(Sα − vxα)

Γ∗(Sα − SM)
, Γ∗ ≡ (1 − v∗2/c2)−1/2. (31)

The primitive 1-state HLL variables p∗, v∗

i , B
∗

i are obtained from

W ∗ = m−1(U∗), (32)

where

U∗ =
SRUR − SLUL − FR + FL

SR − SL

(33)

are HLL averages. Now the intermediate two-state primitive variables W ∗

α are

defined according to equations (28-33) and further intermediate two-state con-

servative variables by U∗

α = m(W ∗

α). Thus the intermediate two state fluxes

F ∗

α can be calculated from (25), (28-33) and the time step from (16,21). The

mapping m−1 is also needed in calculating the values for the fluxes FL,R, be-

cause they are given as functions of the primitive variables W in (11) and

the time-stepping is done for conservative variables U . Formally this can be

written as F (W )L,R = F (m−1(U))L,R.

ii) Bx = 0

In the case of Bx = 0 the jump conditions over the SM wave [1, 9] yield

v∗

xα = v∗

x, p∗L +
b∗L

2

2µ0

= p∗R +
b∗R

2

2µ0

, α = L,R, (34)

where b∗α
2 = B∗

α
2(1 − (v∗

α

c
)2) + (~v∗

α

c
· ~B∗

α)2. Now we assume identically to the

Bx 6= 0 case that SM = v∗

xα = v∗

x and similarly

p∗α +
b∗α

2

2µ0

= p∗ +
b∗2

2µ0

≡ p∗tot, (35)

where p∗, b∗ are obtained from the HLL average states. From the jump condi-
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tions over the Sα waves (25) it follows that

v∗

y,zα = (Cy,zα(Sαky,zα − F ky,z

α ) − Cα(Sαkz,yα − F kz,y

α ))/(CyCz − C2

α),

ρ∗

α =
Γαρα

Γ∗

α

(Sα − vxα)

(Sα − SM)
, E∗

α =
SαEα − kxα + p∗totSM

Sα − SM

,

B∗

y,zα = By,zα
(Sα − vxα)

(Sα − SM)
,

where

Cα = (SM − Sα)
B∗

yαB∗

zα

µ0c∗
, Cy,zα = (Sα − SM)(Gα +

B∗2
y,zα

µ0c2
),

Gα = (SαEα − FE
α + Sαp∗tot)/(c

2(Sα − SM)) −
B∗2

α

µ0c2
, (36)

where FE
α , F

ky,z

α refer to the energy and momentum parts of the flux function

(11) respectively. The momentum densities of the intermediate states are

obtained from the definitions k∗

iα = (E∗

α + p∗tot)v
∗

i −
1

µ0c∗
B∗

i ~v
∗ · ~B∗. The rest of

the implementation details follow the Bx 6= 0 case.

3 Numerical tests

A few numerical test problems for RMHD are described in [2, 5]. Three of

them are performed here with the same numerical and physical parameters.

The number of gridpoints is 1600 and the final time is 0.4. The polytropic

index is γ = 5/3, the constants µ0, ǫ0 are normalized to unity and therefore

also c. We present here results for the tests 1,2 and 4 in [2, 5] (here they are

numbered 1,2,3) and three other tests. Tests are performed for both 1-state

HLL and 2-state HLLC solvers.

Test 0a (Fig.1) is defined by the initial state at time t = 0 as

W = (ρ, vx, vy, vz, p, Bx, By, Bz) =

{

(1, 0, 0.4, 0, 1, 1, 1, 0) for x < xh

(0.125, 0, 0.4, 0, 1, 1, 1, 0) for x > xh,

where xh is the middle point of the grid.

Test 0b (Fig.2):

W (t = 0) =

{

(1, 0.2, 0, 0, 1, 1, 1, 0) for x < xh

(0.125, 0.2, 0, 0, 1, 1, 1, 0) for x > xh,

These two tests represent an isolated contact discontinuity where there is a

jump only in rest mass density ρ. Only the rest mass density ρ profiles are

plotted because the other primitive variables are constant. The results show

that HLLC resolves an isolated discontinuity exactly when vx = 0 i.e. in a

coordinate system where the contact discontinuity is at rest. The difference

between HLL and HLLC becomes smaller when vx approaches to c = 1.
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Test 1 (Fig.3,4):

W (t = 0) =

{

(1, 0, 0, 0, 1, 0.5, 1, 0) for x < xh

(0.125, 0, 0, 0, 0.1, 0.5,−1, 0) for x > xh,

This test shows clearly that the contact discontinuity, located approximately

at x = 0.6, is resolved more accurately by the HLLC than the HLL solver.

Test 2 (Fig.5,6):

W (t = 0) =

{

(1, 0, 0, 0, 30, 5, 6, 6) for x < xh

(1, 0, 0, 0, 1, 5, 0.7, 0.7) for x > xh,

In this test there is a contact discontinuity approximately at x = 0.78. The

HLLC solver resolves it more accurately than the HLL solver, but the difference

is small.

Test 3 (Fig.7,8):

W (t = 0) =

{

(1, 0.999, 0, 0, 0.1, 10, 7, 7) for x < xh

(1,−0.999, 0, 0, 0.1, 10,−7,−7) for x > xh,

Two ultra relativistic streams collide producing a lower dip in the rest mass

density profile at x = 0.5. The HLLC solver captures this feature better than

the HLL solver.

The tests 1,2,3 show that HLLC method restores the contact discontinuity

in the mass density calculations. The difference between HLL and HLLC in

resolving the other primitive variables is neglible.

Test 1b (Fig.9,10):

W (t = 0) =

{

(1, 0, 0, 0, 1, 0, 1, 0) for x < xh

(0.125, 0, 0, 0, 0.1, 0,−1, 0) for x > xh,

From the results of the test 1b it can be seen that in the Bx = 0 case the

HLLC solver resolves the contact discontinuity, located at x = 0.58, more

sharply than the HLL solver in mass density, pressure and magnetic field (vy,z

are constants in this test).

4 Summary and conclusions

In this paper we have started succesfully our program of developing a robust

(positive) solver for RMHD equations by gradually adding intermediate states

to HLL [15]: a solver for RMHD with two intermediate states, HLLC, has

been developed. It has been shown by numerical tests that the HLLC has

the benefit of realizing the contact discontinuity more accurately than HLL

and in particular HLLC resolves an isolated contact discontinuity exactly. In

several tests positivity has always been maintained. Numerical tests show that
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the scheme corresponds to the HLLC for MHD in the limit v/c → 0 provided

that the variable range is such that the magnetosonic wave speeds according

to MHD are below the speed of light. This is the case when the classical sound

speed and Alfvén speed are below the speed of light.

There are some essential differences between our scheme and the HLLC

scheme developed in [14]. The speed of the entropy wave SM ≡ v∗

x and the

pressure of the intermediate state in the Bx 6= 0 p∗ are defined differently. We

have SM = vx(U
∗) and p∗ = p(U∗). In [14] SM , p∗ are considered as auxiliary

variables and they are solved from the consistency conditions. Also the def-

initions of the transverse velocity components v∗

y , v
∗

z are different. Especially

we have not found any problems that v∗

y , v
∗

z would become ill-defined when

Bx → 0 which was observed by [14] in their scheme. In the scheme by [14]

there is a problem with the definitions of the intermediate transverse veloci-

ties v∗

y , v
∗

z , which can become arbitrarily large when Bx → 0. This leads in

certain circumstances to the situation where the positivity is lost. We have

not encountered those problems and v∗

y , v
∗

z remain well defined by construction

because they are formed from the HLL averages.

The HLLC solver for RMHD could be applied to astrophysical phenomena

such as relativistic jets. In future work we intend to increase intermediate

states in order to improve the accuracy of resolving the other existing discon-

tinuities.
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Figure 6: test 2, HLLC
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Figure 7: test 3, HLL
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Figure 8: test 3, HLLC
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Figure 9: test 1b, HLL
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Figure 10: test 1b, HLLC
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