

User Relevant Verification for Wind Forecasts

Tressa L. Fowler Randy Bullock, Barbara Brown, Matt Pocernich

Which Users?

- Some users most interested in time series of power output. Matt will tell you about that later this week.
- NWP and statistical models have more info in space and less in time.
- How to do diagnostic verification of these?
- Can we find verification metrics that do not treat the components of wind

Example user relevant methods

- Speed errors by direction
- Categorical stats
- Vector errors
- Finding features in derived wind fields

 object based verification using MODE
 - 7 WRF forecasts and analyses of surface winds
 Wind Speed in meters / second
 Wind Direction from -180 to 180 degrees, 0 = North

Obs Wind Speed (m/s)

Obs Wind Speed (m/s)

Categorical Wind Vx % Correct - 28 HSS - 0.06 GSS - 0.09

Wind	Bia	Threa
Speed	G	t
<3.6	2.52	0.33
3.6-5.3	0.73	0.13
5.3-6.7	0.13	0.04
6.7-8	0.77	0.02
8-9.4	1.74	0
9.4-11.	1.36	0.04
11.2+	0.60	0

 Calculate mean resultant vector and its anc¹

$$\overline{R} = \frac{1}{n} \left[\left(\sum_{i} x_{i} \cos \theta_{i} \right)^{2} + \left(\sum_{i} x_{i} \sin \theta_{i} \right)^{2} \right]^{1/2}$$
$$\overline{\theta} = \operatorname{atan2} \left(\sum_{i} x_{i} \sin \theta_{i}, \sum_{i} x_{i} \cos \theta_{i} \right)^{2}$$

- Only makes sense when the wind direction is unimodal, otherwise vectors cancel each other out.
- Restriction to small spatial domain and time period is recommended

Pictorial Example

- Angle of average wind vector.
- Speed of average wind vector.

Example results

Wind	Mean orientation		Mean resultant	
vectors			length	
	Forecast	Obs	Forecast	Obs
20050712	<mark>6</mark>	<mark>93</mark>	1.8	0.2
20050817	<mark>-144</mark>	<mark>-69</mark>	2.0	<mark>3.0</mark>
20051021	-22	42	<mark>3.4</mark>	4.2
20051108	-134	-98	3.2	5.1
20060111	-115	-100	<mark>3.6</mark>	<mark>6.9</mark>
20060216	-8	29	<mark>7.7</mark>	<mark>4.8</mark>
20060508	-108	-92	3.4	4.5

© 2009 University Corporation for Atmospheric Research. All Rights Reserved.

The Helmholtz theorem

- Given the divergence and curl of a vector field in some bounded region, then the original vector field can be reconstructed from these using explicit formulas.
- => no loss of information from the wind field in calculating the divergence and curl.
- However, our calculation of divergence and curl is an

© 2009 University Corporation for Atmospheric Research. All Rights Reserved.

Forecast Divergence

Observed Divergence

Wind Speed Field

High Winds
E Montana
East Coast
MODE
identifies

Types of Features Detectable in Derived Wind Fields

- Vortices curl and diverg
- Boundaries divergence
- Troughs curl
- Shear curl
- High wind events wind

Conclusions

- Categorical and conditional statistics and graphics provide more detailed information than a single overall statistic.
- Mean resultant vectors keep the components of wind together. Only work for unimodal winds => small domain and short time period.
- Comparison of mean resultant vectors gives an overall sense of error, but ignores distribution of each error.
- Curl, divergence, and wind speed fields each contain wind features, verifiable as objects. In particular, they identify changes in the wind over space.

Future Work

- Identify uncertainty measures for mean resultant angle and length.
- Research use of axial (noncancelling) mean resultant vector for multi-modal winds.
- Adjust MODE settings to handle wind objects and biases.
- Use time domain version of MODE to identify timing errors in the