Evaluating model skill: what is the half-life of a cloud-fraction forecast?
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1. What is Cloudnet?
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3. Desirable properties of a skill score

Equitable: random forecasts have expected score of zero. This is essential!

Transpose symmetric: no change if swap model and observations. Asymmetric scores tend to
g e . cous et improper; they can be hedged by over- or underestimating the frequency of occurrence.
Ig;ji‘:gi”i‘;jjjj;':f; Uses full range of cloud fraction: better than assessing just when fraction exceeds a threshold.
Useful for rare events: Most scores tend to meaningless limit as frequency of occurrence - 0.
Linear: To calculate a half-life, score must depend on the inputs in a reasonably linear fashion.
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Definition and notes

H=a/(a+c) FAR=b/(a+b)
These and other non-equitable scores used by Mace et al. (1998) for cloud evaluation

Score

Hit rate, H
False alarm rate, FAR

Equitable
asn—->0
Transpose
symmetric
Uses full
range
Useful for
rare events
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Define number of correct forecasts x = a+d, then define HSS to vary linearly between 0
for a random forecast and 1 for a perfect forecast using HSS = (X=X,,,4om)/ (XperfectXrandom)

In@ = In(ad/bc)
Analyzed by Stephenson (2000); property that a perfect forecast scores infinity

= (ad-bc)/(ad+bc) = (0-1)/(0+1)
Equivalent to InO, but bounded to 0-1 at the expense of being very non-linear

As HSS but with x = 2| £, oqer~fobs | /N

Heidke Skill Score, HSS
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Yule’s Q (also known as
Odds Ratio Skill Score)

Mean Absolute Error Skill
Score, MAESS

Extreme Dependency
Score, EDS

Symmetric Extreme
Dependency Score, SEDS

Three European sites, 2003-2004

EDS = 2In[(a+c)/n]/In(a/n) -1, where n = a+b+c+d

Shown by Stephenson et al. (2008) to tend to a meaningful limit for rare events

SEDS = {In[(a+b)/n]+In[(a+c)/n]}/In(a/n)-1 = In(a,/a)/In(a/n), where a, is expected a for
random forecast. Desirable properties of EDS plus transpose symmetry & equitability
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(b)
Model evaluation statistics reported by Illingworth et al.
(BAMS 2007); water content statistics also available
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EDS is not transpose symmetric, and a perfect
score is obtained by predicting cloud all the timel

4. Skill versus cloud-fraction threshold

But this only tests model climatology, how can we test
whether clouds were forecast in the right place?
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Symmetric extreme dependency score

1 1
He|d\e sklll score

Heidke Skl" score

Yule's Q is very non-linear

Heidk 5|(I|| score

Hit rate is not equitable Inb has no upper bound

2. Joint probability distributions

Consider “DWD-EU” 7-km model over Murgtal in 2007:

Observed cloud fraction
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HSS indicates /ess skill
for high cloud fractions,
but HSS tends to zero
for rare events
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@& 6 [Cstimating forecast “half life”

,l SEDS over first 1.5 days fitted by an inverse exponential

* DWD half-life 2.87 days in 2004 and 3.15 days in 2007

* Met Office half-life 2.91 days in 2004 and 3.07 in 2007

DWD forecasts available out to 3 days

 DWD half-life 4.31 days for 1.5-3 day forecasts

* Forecast skill at short range dominated by convective
timescales, at long range by large-scale weather systems

Half-life for ECMWF 500-mb geopotential height is 9 days

* Clouds less predictable than pressure field
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In6 indicates more skill
for high cloud fractions,
but In6 tends to infinity

for rare eventsl!

Symmetric Extreme
Dependency Score reliable
at low base rate and shows

no significant trend

Frequency of 7> i esh
(also known as base
rate) decreases as
finresh IS iNCreased

Degree of association appears
poor for raw cloud fraction

Better association apparent
if average to 6 hours

Simplify information by defining a contingency table:

Observed cloud (f,,o> finresh) Observed clear-sky (f,p<< fihresh)

d: Number of clear-sky hits
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5. Skill versus height

Mid-level clouds most

skilfully forecast

e Surprising: physics of
mixed-phase clouds not
represented well
Large-scale ascent has
largest amplitude in
mid-troposphere so
cloud response most
strong here?
Met Office performs best: arguably the most sophisticated
microphysics with separate liquid and ice

Boundary layer clouds least skilfully forecast ; fe o A% 0

* Not a surprise: well-known forecasting problem

 QOccurrence a subtle function of subsidence, surface
fluxes, entrainment, stability, drizzle formation...
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Temporal averaging

* Absolute skill and half-life
increase with temporal
averaging

* Larger-scale features more
predictable

Full results presented by Hogan

et al. (2009)
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