Spatial Verification Methods

Barbara Brown (bgb@ucar.edu)
National Center for Atmospheric Research (NCAR)
Boulder, Colorado

Collaborators: Randy Bullock, John Halley Gotway, David Ahijevych, Eric Gilleland, Beth Ebert, Barbara Casati

4th International Verification Methods Workshop
Helsinki, Finland
June 2009
Goals

• Briefly describe new approaches for evaluation of spatial (gridded) forecasts that
 – Provide meaningful information about performance
 – Overcome some of the insensitivity of traditional approaches

• Present results from the spatial method intercomparison project (ICP)
Challenge of High Resolution

Examples of 12-h accumulated precip

THEN

190-km LFM, 1977

NOW

3-km WRF, 2009

Fawcett, BAMS
Traditional approach

Consider gridded forecasts and observations of precipitation

Which is better?
Traditional approach

Scores for Examples 1-4:
- Correlation Coefficient = -0.02
- Probability of Detection = 0.00
- False Alarm Ratio = 1.00
- Hanssen-Kuipers = -0.03
- Gilbert Skill Score (ETS) = -0.01

Scores for Example 5:
- Correlation Coefficient = 0.2
- Probability of Detection = 0.88
- False Alarm Ratio = 0.89
- Hanssen-Kuipers = 0.69
- Gilbert Skill Score (ETS) = 0.08

Forecast 5 is “Best”
Some problems with the traditional approach:

(1) **Non-diagnostic** – doesn’t tell us what was wrong with the forecast – or what was right

(2) **Ultra-sensitive** to small errors in simulation of localized phenomena
Spatial forecasts

Weather variables (e.g., precipitation) defined over spatial domains have coherent structure and features.

Spatial methods aim to:

• Account for uncertainties in timing and location
• Account for spatial structure
• Provide information on error in physical terms
• Provide information that is
 – Diagnostic
 – Meaningful to forecast users
Spatial Method Categories

filtering

neighborhood

scale-separation

displacement

feature-based

field deformation
New spatial verification approaches

Neighborhood
Give credit to "close" forecasts

Scale separation
Measure scale-dependent error

Field deformation
Measure distortion and displacement (phase error) for whole field

Object- and feature-based
Evaluate attributes of identifiable features

How should the forecast be adjusted to make the best match?
Method Intercomparison Project (ICP)

Goals:
• Compare information provided by various newly proposed spatial verification methods
• Investigate strengths and weaknesses

Activities:
• Workshops (2007, 2008)

Datasets:
• Geometric cases
• Actual precipitation forecasts and obs
 – WRF precipitation forecasts (4 km)
 – Stage IV precipitation analysis
 – Resolution: 4 km
 – Domain: Central U.S.
 – Time period: May-Jun 2005 (9 focus cases)
• Perturbed cases

Web site: http://www.ral.ucar.edu/projects/icp/
Cases used in the ICP

Geometric cases

- a) geom000: observation
- b) geom001: 50 pts. too far right
- c) geom002: 200 pts. too far right
- d) geom003: 125 pts. too far right, biased high
- e) geom004: 125 pts. too far right, wrong aspect ratio
- f) geom005: 125 pts. too far right, biased very high, but overlapping

“Real” cases

- 26 April 2005
- 13 May 2005
- 14 May 2005
- 18 May 2005
- 19 May 2005
- 25 May 2005
- 1 Jun 2005
- 3 Jun 2005
- 4 Jun 2005

1-h accumulation in mm

[Maps showing various cases with different colored areas representing predictions and observations.]
Scale separation methods

- **Goal:** Examine performance as a function of spatial scale

- **Example:** Power spectra
 - Does it look real?
 - Harris et al. (2001) compared multi-scale statistics for model and radar data

From Harris et al. 2001
Scale separation methods

Example methods:

- **Intensity-scale** (Casati et al. 2004)
- **Multi-scale variability** (Zapeda-Arce et al. 2000; Harris et al. 2001; Mittermaier 2006)
- **Variogram** (Marzban and Sandgathe 2009)
Neighborhood verification

Goal:
Examine forecast performance in a region; don’t require exact matched

- Also called “fuzzy” verification
- Example: Upscaling
 - Put observations and/or forecast on coarser grid
 - Calculate traditional metrics
- Provide information about scales where the forecasts have skill
Neighborhood methods

Example methods:

• Distribution approach (Marsigli)

• Fractions Skill Score (Roberts 2005; Roberts and Lean 2008; Mittermaier and Roberts 2009)

• Multiple approaches (Ebert 2008, 2009) (e.g., Upscaling, Multi-event cont. table, Practically perfect)
Field deformation

Goal:
Examine how much a forecast field needs to be transformed in order to match the observed field
Field deformation methods

Example methods:

• Forecast Quality Index (Venugopal et al. 2005)

• Forecast Quality Measure/Displacement Amplitude Score (Keil and Craig 2007, 2009)

• Image Warping (Gilleland et al. 2009; Lindström et al. 2009; Engel 2009)

From Keil and Craig 2008
Object/Feature-based

Goals:

2. Identify relevant features in the forecast and observed fields

3. Compare attributes of the forecast and observed features
Object/Feature-based

Example methods:

- Cluster analysis (Marzban and Sandgathe 2006a, b)
- Composite (Nachamkin 2005, 2009)
- Contiguous Rain Area (CRA) (Ebert and McBride 2000; Ebert and Gallus 2009)
- MODE (Davis et al. 2006, 2009)
- Procrustes (Micheas et al. 2007, Lack et al. 2009)
Limitations: Filtering (Neighborhood and Scale separation)

Does not clearly isolate specific errors (e.g., displacement, amplitude, structure)
Limitations: Displacement methods (features-based, field deformation)

- May have somewhat arbitrary matching criteria
- Often many parameters to be defined
- More research needed on diagnosing mesoscale structure
Strengths – Filtering
Neighborhood & Scale-Separation

• Accounts for
 ○ Unpredictable scales
 ○ Uncertainty in observations
• Simple – ready-to-go
• Evaluates different aspects of a forecast (e.g., texture)
• Scale-dependent skill
Strengths - Displacement

• Features-based
 – credit for close forecast
 – measures displacement, structure

• Field-deformation
 – Distinguish aspect ratio and orientation angle error
 – credit for close forecast
What do the new methods measure?

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Traditional</th>
<th>Feature-based</th>
<th>Neighborhood</th>
<th>Scale</th>
<th>Field Deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perf at different scales</td>
<td>Indirectly</td>
<td>Indirectly</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Location errors</td>
<td>No</td>
<td>Yes</td>
<td>Indirectly</td>
<td>Indirectly</td>
<td>Yes</td>
</tr>
<tr>
<td>Intensity errors</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Structure errors</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Hits, etc.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Indirectly</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Back to the original example…
What can the new methods tell us?

Example:

- MODE “Interest” measures overall ability of forecasts to match obs

- Interest values provide more intuitive estimates of performance than the traditional measure (ETS)

- But note: Even for spatial methods, Single measures don’t tell the whole story!
Conclusion

• New spatial methods provide great opportunities for more meaningful evaluation of precipitation forecasts
 – Feed back into forecast development
 – Provide information to users
• Each method is useful for particular types of situations and for answering particular types of questions
• ICP may represent a model for future “Verification Testbed” activities

For more information, see
http://www.rap.ucar.edu/projects/icp/index.html
Spatial Verification ICP summary

• Weather and Forecasting special issue
 – Literature review – Gilleland et al.
 – Results overview – Ahijevych et al.

• Individual Methods
 – Casati; Davis et al.; Ebert; Ebert and Gallus; Gilleland et al.; Keil and Craig; Lack et al.; Lindstrom et al.; Marzban and Sandgathe; Marzban et al.; Mittermaier and Roberts; Nachamkin; Wernli et al.