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Background

Field Deformation Methods

Objective

Deform the forecast field, F , to better match the observed field, O.

Calculate measures of forecast performance based on:

(i) the original field,
(ii) the amount of displacement, and
(iii) the improvement in performance of the deformed forecast

over the original.
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Background

Literature
Among the earliest spatial forecast verification methods:
Polynomial Image Warping
Dickinson and Brown (1996); Alexander et al. (1999)

Other
Nehrkorn et al. (2003)

More recently:
Optical Flow (or similar)
Marzban et al. (2009a,b); Keil and Craig (2007, 2009)

Field Deformation Methods result in a vector field describing an
optimal deformation of the forecast that better compares with the
observed field.
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Image Warp Methodology

The image warp:
A likelihood function is used to find the optimal warp function
(among a class of warp functions).

F̃ (x, y) = F (W (x, y)),

where W (x, y) maps coordinates from the undeformed image, F ,
to the deformed image, F̃ .
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Methodology

Many choices for W . A few popular choices.

• polynomials

• thin-plate splines

• B-splines
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Motivation

For computational concerns, use control points, pF and pO,
to determine the warp.

Introduce log-likelihood to measure dissimilarity between F̃ and O.
This is different from measuring via a forecast verification score!

log p(O|F,pF ,pO) = h(F̃ , O) (1)
where choice of error likelihood h depends on the forecast variable.
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Methodology

Must penalize non-physical warps!
Introduce a smoothness prior for the warps
Behavior determined by the control points. Assume pO are fixed and
apriori known, in order to reduce the prior on the warping function
to p(pF |pO).

p(pF |O,F,pO) = log p(O|F,pF ,pO)p(pF |pO) (2)

where it is assumed that pF are
conditionally independent of F given pO.
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Methodology

Estimation
To find the optimal deformation (based on pF and pO), maximize the
likelihood given by (2). From (1) and (2), we get

`(pF |O,F,pO) = log p(O|F,pF ,pO) + log p(pF |pO)

= h(F̃ , O) + log p(pF |pO).
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ICP Test Cases

Observation
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MSE(before) = 17, 508 MSE(after) = 9, 316

17,508−9316
17,508 ≈ 47%
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ObservationForcast Deformed forcast

MSE 184.71 MSE 0.31Warp !3.64e!002

x: !16.0    y: 0.0
sx: 0.848    sy: 0.949

Gemoetric 1; 50 pts too far to the east
3 · (−16.0) = −48 ≡ Moves forecast 48 grid points to the west;
negligible re-scaling and nonlinear movement.

≈ 99.8% reduction in MSE.
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!bservationForcast Deformed forcast

MSE 671.32 MSE 0.27Warp !3.39e!003

x: !33.3    y: !0.1
sx: 0.252    sy: 1.029

Geometric 3; 125 grid points too far east and larger spatial coverage

≈ 100 grid points west
Squeezes horizontally.
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ObservationForcast Deformed forcast

MSE 184.93 MSE 0.47Warp !1.88e!001

x: !31.2    y: 20.5
sx: 0.267    sy: 2.524

Geometric 4; 125 pts too far east and incorrect orientation
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ObservationForcast Deformed forcast

RMS 176.75 RMS 0.82Warp !4.35e!002

x: !10.1    y: 0.9
sx: 1.116    sy: 0.781

True Rotation
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Ranking of multiple forecasts: A proposed statistic

IWSj = c1jDj + c2j(1− ηj) + c3jAMPj

• j = 1, . . . , J indexes the forecasts being compared,

• D is the (normalized) average displacement of points,

• η represents the reduction in RMSE,

• AMP is the standardized RMSE before deformation, and

• the coefficients, c·j are user-specified weights that can depend on
the values of each component (e.g., if D is very large, might want
to ignore the first two components).
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ICP perturbed cases

Perturbed real cases have identical shape, but displaced, and in one
case (prt006) the amplitude has been everywhere multiplied by 1.5
mm, and another (prt007) has it everywhere reduced by 1.27 mm.
These last two have the same spatial displacements as prt003, and
otherwise, the x and y displacements each double with case number,
beginning with 3 pts to the right and 5 pts down for case prt001.

IWS rank by case results:

prt001 prt002 prt003 prt004 prt005 prt006 prt007

1 2 3 5 6 7 4
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Discussion, Ongoing and Future Work

• A fine line between rotations vs. re-scaling, but for real cases,
does not seem to be an issue.

• Control points:
Fewer mean faster computation, but less intricate warps.

• Statistical model will allow for parametric confidence intervals.

• Could be applied to most any field
(e.g., wind vector fields, temperature, etc.)

• Extendable to multiple dimensions (time, vertical, etc.)

• Gives information about types of error:
Vector field describing the deformation has potential to give a lot
of information, but a few simple statistics also yield very useful
results.
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That’s all . . .

Thank you.

Questions?

References from slides on next slide.

Test cases taken from the Spatial forecast Verification
Inter-Comparison Project (ICP)
http://www.ral.ucar.edu/projects/icp
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