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Outline

n What are inversion problems?
n Where are they used?
n And how are they solved?
- n One example in detal: Doppler imaging
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What 1s an inverse problem?

Alifanov: Solution of an inverse problem
entails determining unknown causes based
on observation of their effects.

Or: A problem where the answer 1s known,
but not the question
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Seismology

n  The scientific study of
earthquakes and the
propagation of elastic waves
through the Earth

n  Also includes studies of
earthquake effects

n Earthquakes, and other sources,
produce different types of
seismic waves that travel
through rock, and provide an
effective way to image both

sources and structures deep
within the Earth

n  Related‘ subjects: helio- and
asteroseisomolgy
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Se1smic surveys

n For locating ground
water

n Investigating locations
for landfills

Characterizing how an
areca will shake during
an earthquake

n For o1l and gas
exploration.

3D model of the top reservoir structure of

ﬁ I P an oilfield (Leeds University)
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0) Computerized Tomography
= (CT Scan)

n Method employing
tomography

n  Dgital geometry
processing 1s used to
generate a three-
dimensional image of the
internals of an object

n From a large series of
two-dimensional X-ray

images taken around a

’} single axis of rotation.
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Other applications

Airport security
Industrial process monitoring

Photoelasticity - visualisation
of the stress inside a transparent
object

Electromagnetic monitoring of
molten metal flow

X-ray tomography in material
science

Numerous applications in
physics and astronomy

etc From Fotosearch©
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Three fundamental questions

n How accurately are the data known?

n How accurately can we model the response
of the system?

n What 1s known about the system
independent of the data?
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A prior1 information

n Often very important

n For any sufficiently fine parameterization
of a system there will always be
unreasonable models that fit the data too

- n Prior information 1s the means by which the
unreasonable models are rejected or down-
weighted
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{?—} General formulation

n Inverse problem can be formulated:
d=G(m)
n where G 1s an operator describing the

explicit relationship between data (d) and
model parameters (m)

n (G 1s a representation of the physical system

n For linear problems d and m are vectors and
\ G a matrix
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Well-posed problem

Stems from a definition given by
Hadamard

A solution exists
The solution 1s unique

The solution depends continuously on
the data, 1n some reasonable topology

Problems that are not well-posed 1n the
sense of Hadamard are termed ill-posed

Inverse problems are often 1ll-posed.



Regularisation

If a problem 1s well-posed, then 1t stands a
good chance of solution on a computer
using a stable algorithm

If 1t 1s not well-posed, it needs to be re-
formulated for numerical treatment

Typically this involves including additional
assumptions, such as smoothness of
solution

This process 1s known as regularisation



Regularisation 11

n In general 1ll-posed inverse problem can be
thought to consist of two positive functionals A4

and B

n A measures agreement of the model to the data. If
A alone 1s minimised the agreement becomes
impossibly good, but the solution 1s unstable or
unrealistic

n B measures ,smoothness‘ of the desired solution.
Minimising B gives a solution that 1s ,smooth® or
,stable‘ or ,likely‘ — and has nothing to do with

\ the measurements
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Agreement vs. smoothness

Best smoothness

Better

agreement A4 .
Achievable
| \ solutions

Best solution Best agreement

i Better smoothness B
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@ Maximum Entropy Principle

r(XM))=/X(M)log(X(M))dM

n Provides uniqueness of the solution and
minimum correlation between the elements

n This way we get the X(M) with the highest
possible informational entropy
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@ Tikhonov regularisation

ri(X)=[fu | grad X(M) |2 dM

n With this regularisation we are looking for the
smoothest possible solution that still produces the
observations

n Used 1n the cases where strong correlation
between neighbouring points is expected
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Student exercise

§

14

I2

I3

Observations:
[1+12+13+14=36
[1+12=12
[1+14=12

Calculate I1, I2, I3 and 14 using both Tikhonov
regularisation and Maximum Entrophy Principle



Some hints

Tikhonov: rr=(11-12)"2+(12-13)"2+(13-14)"2+(14-11)"2
MEP: rver=I1log(11)+12log(12)+13log(13)+14log(14)

Express 12, 13 and 14 in respect to I1 and then
differentitate
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@ Results

Tikhonov: 11=3, 12=14=9, 13=15
MEP: 11=4, 12=14=8, 13=16

n Tikhonov regularisation produces plane
brightness distribution (I13-12=I2-11)

n Maximum Entropy Principle produces a bright
x spot in the lower corner (13=12+14)
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n Used for making spatially
resolved maps of the stellar
surface

n Mapped characteristic can for
example be:

Effective temperature
Elemental abundance
Magnetic field

n Invented by Deutsch (1958)
and developed further by
Deutsch (1970), Falk \&

Wehlau (1974), Goncharsky et

\ al. (1977) and many others

6438 6440
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@ Formulation of the problem I

n X(M) characterises the strength of the spectral
line originating from the surface point M

n X(M) can be temperature, abundance, etc

n The residual lineprofile at some phase (0) can be
calculated by:

o n oy o d S LX), MR — ANM), X(M), M)dS(M)
B T L, X (M), M)dS (M)

AI P Rioc=1-Tiine/Tcont
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Formulation of the problem II

n The inverse problem amounts to finding the
surface parameter X(M) from the observed

profiles such that

Tea  H
1

Z Z g'i';:ﬂ: }‘}[Rabﬁli‘:ﬂ: }‘:' T Rth-([;#:': :'!'*:']E = 7t

=] ]

n As this 1s an 1ll-posed problem we need
regularisation

F(X) = f)+ ;“"LT‘(XCMD =minimum

Dify) =
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Requirements

n  Models
Accurate line profile modelling

n Instrumentation
High spectral resolution
High signal-to-noise ratio

n  QObject
Good phase coverage (convenient rotation period)

Rapid rotation
Not too long exposure time (bright)

} Something to map!
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Resolution

The best resolution on the stellar surface is
achieved when:

-

FWHMinstr < FW HMuine

The intrinsic line profile 1s significantly
broadened even 1f the star would not rotate. For a
solar-type star with Tey=5000 K the thermal line
width 1s 1.2 km/s

n Instrumental resolution A/AA=35000-120000
} corresponds to 8-3 km/s

-
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Signal-to-noise of the
observations
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Simulations by Silva Jarvinen

Phoaa = 0.4 Phage = 0.25 Phaaa = 0.5 Phaoge = 0.75 FPole—an T.k
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OBJECT  Vsini =45 km/s

Phoaa = 0.4 Phoae = 0.25 Phoaa = 0.5 Phaoge = 0.75 FPole—on

ES+
+

N

T.k

=n=s
E7EY
Ed71
o1Ta
48T
HeG
436%

&)

Resolution: 250 000
S/N: infinite

Phases: 20 Vsini = 30 km/s

Phoaa = 0.4 Phoze = 0.25 Phoaa = 0.5 Phaoge = 0.75 T.h

206

Vsini = 17 km/s

Phoaa = 0.4 Phoze = .25 Phoza = 0.5
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Phoge = 0.75 Pole—an

O

AIP



Phase smearing

n During the observations the star rotates and the
bump moves 1n the lineprofile

:> The bump signal will be smeared

n Integration time should be as short as possible:

+
. Qo= woO +@%+
+

At<0.01P:
Examples:
Pror = 20 days At > 4.5 hours
P =5 days At = 70 minutes
X P.or = 2 days At = 30 minutes

AI P Pror = 0.5 days At = 7 minutes



Spot size

n Largest observed sunspot groups extend about 5°
degrees (radius)

n What effects would they have in the lineprofiles?
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Resolution: 250 000

10° spot (radius)

With Doppler imaging: Phases: 20

Simulations by Silva Jarvinen

x Doppler imaging cannot be used for studying solar type spot groups
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Temperature maps of FK Com
for 1994-2003
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@ Ending note

Inversion methods are powerful tools BUT

I

n Take great care when obtaining observations
n Take time to understand your observations and
their limitations

n Your model 1s crucial, so think carefully that you
have included all the necessary physics

»} When all these points are taken into account you can produce

very interesting science
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