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Task: Describe plasma theory in 2 hours

Impossible? No!

But if you want to describe the dynamics of two colliding rotating black holes, 
well, that is another matter.

Compare with general relativity

and that’s it!

One can claim that all plasma physics is described by Boltzmann’s equation

With this only you do not get far to solve any relevant plasma physics problems
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What does Boltzmann’s equation tell about plasma physics?

distribution function:
plasma physics is
statistical physics

role of EM forces:
plasma physics is
electrodynamics

collisions can break
the conservation of
phase space density

How to define the plasma state?

Plasma is quasi-neutral ionized gas
containing enough free charges to make 
collective electromagnetic effects
important for its physical behaviour.

The most fundamental plasma properties are
• Debye screening
• plasma oscillations
• gyro motion of plasma particles

Debye screening
+

+
+

+
+ +

+
+

Coulomb potential of each charge:

Assume thermal equilibrium (Boltzmann distribution)

Introduce a test charge qT. What will be its potential?

labels the particle
populations (e.g., e, p)

Home exercise: ;

Plasma parameter:

Debye length: Number of particles
in a Debye sphere:

A little better(?) definition for plasma

L is the size
of the system
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Plasma oscillation

Assume: n0 fixed ions (+) &  n0 moving electrons (–)

Apply a small electric field E1

electrons move:

Electron continuity equation:

Linearized continuity equation (1st order terms only): !!

plasma frequency

( u0 = 0 electrons are assumed cold )
0

0 0 2nd order

Force: 

1st Maxwell:

Useful rules-of-thumb

Plasma frequency (angular frequency)

Debye length Note the units !
(1 eV 1.16 104 K)

Gyromotion in the magnetic field
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Plasma physics is difficult – but why?

• Combination of statistical physics and electromagnetism

• Large variety of scales, from electrons to ions to fluids

• A great variety of plasma descriptions must be mastered
– single particle motion
– Vlasov theory (electrons and ions described by distribution functions)
– fluid descriptions (e.g., magnetohydrodynamics)
– various hybrids of these

• Collisions or their absence

Electrodynamics: Maxwell’s equations

Magnetic flux is important in macroscopic plasma physics

EM fields are empirically determined through the Lorentz force

or

Because

only E performs work on charges

Thus any ”magnetic acceleration” is associated with an electric
field in the frame of reference where the acceleration is observed
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Ohm’s law

Ohm’s law relating the electric current and electric field
is similar to the other constitutive equations and

The conductivity , permittivity , and permeability depend on the
electric and magnetic properties of the media considered. They may be
scalars or tensors, and there does not need to be a local constitutive
relation at all, not even Ohm’s law!

A medium is called linear if are scalars and they are not functions
of time and space.

Note that also in linear media = ( ,k), which is a very important
relationship in plasma physics! 

Conservation of EM energy
Poynting’s theorem

The energy of electromagnetic field is given by

Strating from Maxwell’s equations it is straightforward to get

where

Poynting’s theorem

is the Poynting vector

work performed 
by the EM field

energy flux through
the surface of V

change of
energy in V

Integrating over volume V (and using Gauss’s law for the divergence)
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Example: Poynting’s theorem in fluid plasma (MHD)

EM energy flux
into (out of) 
volume V

change of
magnetic energy
in volume V

plasma 
heating
in volume V

acceleration
in volume V

Single-particle motion:
Guiding centre approximation

Equation of motion of charged particles is
(assume, for the time being, nonrelativistic
motion; = 1 and p = mv)

Consider the case   E = 0 and B = const (neglect the non-EM forces)

The radius of the circle is ;
(Larmor radius)

The gyro period (cyclotron period, Larmor time) is:

cyclotron frequency
gyro frequency
Larmor frequency

B

v

The pitch angle ( ) of the helical path is defined by
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The frame of reference where  v|| = 0 : Guiding centre system (GCS)

Decomposition of the motion to the motion of the guiding centre and 
to the gyro motion is called the guiding centre approximation

In the GCS the charge causes an electric current:  I = q / L

The magnetic moment associated to the circular loop is 

or, in the vector form

Clearly: is always opposite to B (rL depends on the sign of q)

Thus plasma can be considered a diamagnetic medium: 

E x B drift
Let E = const and B = const
The eq. of motion along B is

 constant acceleration parallel/antiparallel to B
 very rapid cancellation of large-scale E|| in plasma!

The perpendicular components of the eq. of motion are

Substitution leads again to gyro motion but now
the GC drifts in the y-direction with speed Ex /B

+ ion

electron

In vector form:

All charged particles drift to the
same direction E and B
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Other non-magnetic drifts
Write the perpendicular eq. of motion in the form

Assume that F gives rise to a drift vD and transform

This requires F/qB << c. If F > qcB , the GC approximation cannot be used!

In GCS the last two terms must sum to 0  ( )

Inserting F = qE into ( ) we get the ExB-drift

F = mg gives the gravitational drift
separates
charges

 current

Slow time variations in E polarization drift

The corresponding polarization current is
carried
by ions!

Magnetic drifts
Assume static but inhomogeneous magnetic field. Guiding centre
approximation is useful if the spatial and temporal gradients of B
are small as compared to the gyro motion:

Considering first the gradient of B only the force
on the guiding centre can be shown to be

The parallel force gives acceleration along B

ion

electron

From the equation

we get the gradient drift velocity
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If there are on local currents in plasma, i.e.,

the curvature drift reduces to

and we can combine the gradient and curvature drifts
&

are unit vectors

These are straightforward to modify
for relativistic motion by substitution

The field-line curvature (centrifugal force) leads to curvature drift

curvature radius

Adiabatic invariants
Symmetry principles: periodic motion conserved quantity

symmetry conservation law

What if the motion is almost periodic?

Hamiltonian mechanics:

Let q & p be canonical variables and the motion almost periodical   

is constant, called adiabatic invariant

Example: Consider a charged particle in Larmor motion. 
Assume that the B does not change much during within one circle.  
The canonical coordinate is rL and the canonical momentum

The magnetic moment is
an adiabatic invariant

charge!
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Magnetic mirror
In guiding centre approximation both W and are conserved.
If B increases slowly, W increases slowly, thus W|| decreases.
What happens when W||  0 ?

As and v2 are conserved, and B are related through

When  /2, the force
on the GC turns the charge back
(mirror force) and the mirror field Bm
for a charge that at B0 has 
the pitch-angle is given by

mirror point

Also parallel electric field and/or 
gravitation may need to be considered

If the non-magnetic forces can 
be derived from a potential U(s),

Magnetic bottle
A simple magnetic bottle consists of two mirrors facing each other.
A charged particle is trapped in the bottle if  

Otherwise it is said to be in the loss-cone
and escape at the end of the bottle

v

v||

trapped
particles

loss cone

The dipole field of the Earth is 
a large magnetic bottle

Note that there are much
more complicated trapping
schemes (e.g. tokamak)
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In plasma physics is called the first adiabatic invariant. 

Consider the bounce period of a charge in a magnetic bottle

If then is constant (second adabatic invariant)

This, of course requires that 

If the perpendicular drift of the GC is nearly periodic
(e.g. in a dipole field), the magnetic flux through the GC orbit

is conserved. This is the third adiabatic invariant.

The adiabatic invariants can be used as coordinates in studies of the
evolution of the distribution function

Betatron acceleration
Let T be the kinetic energy of the particle in a time-dependent B
Write the time derivative in a moving frame as
In GCS:

In the reference frame of the observer (OFR)

Do a little algebra Þ betatron acceleration:

Increasing B at the position 
of GC: ”gyro betatron”

Two effects:
• Field-aligned acceleration, if
• Drift betatron:
Particle drifts toward increasing B : 
Conservation of

thus
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Fermi acceleration of cosmic rays

The modern version of Fermi acceleration is called diffusive shock
acceleration where shock waves are responsible for the acceleration. 
It does not conserve and J.

Fermi proposed the drift betatron acceleration as
a mechanism to accelerate cosmic rays to very large
energies in 1949 in the following form:
Let the particle move in a mirror field configuration
where the mirror points move toward each other.
Assume that J is conserved.
Now decreases. To compensate this

and thus must increase.
Compare this to the acceleration of a tennis ball
hit by a racket!

Spectrum of galactic cosmic raysCosmic Rays
galactic: > 100 MeV
solar: < 1 Gev
Anomalous: around 10  MeV
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Distribution function

phase space2D 6D
v

dv

xdx

(x,v)

r

v

d3r

d3v
(r,v)

A plasma particle (i) is at time t in location and has velocity

The distribution function gives the particle number density
in the (r,v) phase space element dxdydzdvxdvydvz at time t

Average density: ; density at location r:

Example: Maxwellian distribution

The units of f :  volume–1 x (volume of velocity space)–1 =  s3m–6

Normalization: total number of particles

Examples of distribution functions

Maxwellian

Maxwellian in a frame of reference
that moves with velocity V0

Anisotropic (pancake) distribution (v|| || B)

Anisotropy can also be cigar-shaped
(elongated in the direction of B)

Drifting Maxwellian



14

Magnetic field-aligned beam (e.g., particles causing the aurora):

Loss-cone distribution in a magnetic bottle:

Maxwellian distribution

Kappa distributionflux

energy

Kappa distribution Maxwellian with high-energy tail

-function energy at the peak
of the distribution

Observed particle distributions often resemble kappa distributions;
a signature that non-thermal acceleration has taken place somewhere

The tail follows a power law

Vlasov equation (VE)

Compare with the Boltzmann equation in statistical physics (BE)

Boltzmann derived for strong short-range collisions

In plasmas most collisions are long-range small-angle collisions.
They are taken care by the average Lorentz force term

large-angle collisions only
e.g., charge vs. neutral

VE is often called collisionless Boltzmann equation

(M. Rosenbluth: actually a Bolzmann-less collision equation!)

Ludwig Boltzmann

Vlasov and Boltzmann equations
equation(s) of motion for f
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Vlasov theory
How to solve

Landau’s solution of VE

Very hard task in a general case.
VE is nonlinear, thus we linearize:

Consider a homogeneous, field-free plasma
in an electrostatic approximation:

The linearized VE is now

where

Vlasov tried this at the end of the 1930s using Fourier transformation

an integral of the form

pole along the integration path, what to do?
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In 1945 Vlasov presented a solution of VE at the long wavelength limit

Thus in finite temperature the plasma oscillation propagates as a wave

The solution for E is:
For Maxwellian f0 < 0 and the wave is damped: Landau damping

Langmuir wave

In 1946 Lev Landau found the way to handle the pole at

He used the Fourier method in space but treated the problem
as an initial value problem and used Laplace transform in time.

Lev Landau

For details, see any advanced plasma physics text book

For an interested student: the long wavelength solution is

Þ
Langmuir wave

Landau damping

More realistic configurations soon become manually intractable,
already for uniformly magnetized plasma the problem is to solve

where
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Perpendicular modes on dispersion surfaces
”electron modes” ”ion modes”

electron Bernstein modes
upper hybrid mode

O-mode

X-modes

ion Bernstein
modes

lower hybrid mode

electrostatic ion
cyclotron modes
(nearly perp.)

fast MHD mode
(magnetosonic)

Parallel modes on dispersion surfaces
”electron modes” ”ion modes”

R-mode

L-mode

Langmuir
wave ion-acoustic

wave

whistler mode

whistler mode

Alfven wave

EM ion 
cyclotron wave

EM electron
cyclotron wave
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Macroscopic theory: Velocity moments of f

Density is the zeroth moment;  [n] = m–3

The first moment ( denotes different particle species):

Particle flux;  [ ] = m–2 s–1

Average velocity = flux/density,  [V] = m s–1

DO NOT EVER MIX UP  V(r,t) and  v(t) !!

Electric current density, [J] = C m–2 s–1 = A m–2

Pressure and temperature
from the second velocity moments

Pressure tensor

dyadic product  tensor

If where is the unit tensor, we find the scalar pressure

introducing the temperature

Thus we can calculate a ”temperature” also in non-Maxwellian plasma!

Assume V = 0: T µ  K.E. 

Magnetic pressure
(i.e. magnetic energy density)

Plasma beta
thermal pressure / magnetic pressure

B dominates over plasma
plasma dominates over B

3rd velocity moment heat flux (temperature x velocity), etc. to higher orders…
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Macroscopic plasma description
Macroscopic plasma theories are fluid theories at different levels
• single fluid (magnetohydrodynamics MHD)
• two-fluid (multifluid, separate equations for electron and ion fluids)
• hybrid (fluid electrons with (quasi)particle ions)

Macroscopic equations can be obtained by taking velocity moments of 
Boltzmann / Vlasov equations

order n order n + 1

Taking the nth moment of BE/VE introduces terms of order n +1 !
This leads to an open chain of equations that must be terminated
by applying some form of physical intution.

Note that the collision integrals can be very tricky!

We start from the Boltzmann equation

and calculate its zeroth velocity moment.

In absence of ionizing or recombining collisions, 
the collision integral is zero, 
and the result is the continuity equation

Multiplying by mass or charge we get the continuity eqs for these

General form of conservation law for F :
(G is the flux of F)

To calculate the first moment, multiply BE by momentum and integrate

Equation for momentum transport,
actually equation of motion!
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Now the convective derivative of V
and the pressure tensor are second moments

The electric and magnetic fields
must fulfill Maxwell’s equations

are external sources

Note that the collision integral can be non-zero, because collisions transfer
momentum between different particle species!

Calculate the second moment (multiply by vv, and integrate; rather tedious) 
 heat transfer equation (conservation of energy)

Now the heat flux is of thrid order. To close the chain some equation relating the 
variables must be introduced.

Equations of MHD
Sum over all particle species

(or energy equation)

(isotropic pressure assumed)

( )

Relevant Maxwell’s
equations; displacement
current neglected

In space plasmas the conductivity
often is very large: ideal MHD

However, sometimes other terms than the resistive start to play a role
(e.g., in magnetic reconnection) and a more general Ohm’s law is needed
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Convection and diffusion of B
Take curl of the MHD Ohm’s law and apply Faraday’s law

Thereafter use Ampère’s law and the divergence of B
to get the induction equation for the magnetic field

Assume that plasma does not move

diffusion equation: diffusion coefficient:

If the resistivity is finite, the magnetic field diffuses into the plasma to remove
local magnetic inhomogeneities, e.g., curves in the field, etc.

Let LB the characteristic scale of magnetic inhomogeneities. The solution is
where the characteristic diffusion time is

(Note that has been
assumed constant here)

In case of the diffusion becomes very slow
and the evolution of B is completely determined
by the plasma flow (field is frozen-in to the plasma) 

convection equation

Let the characteristic spatial and temporal scales be
& and the diffusion time

The order of magnitude estimates for the terms of the induction equation are 

The measure of the relative strengths of convection and diffusion is the 
magnetic Reynolds number
This is analogous to the Reynolds number in hydrodynamics

viscosityIn fully ionized plasmas Rm is often very large. E.g. in the solar wind
at 1 AU it is 1016 – 1017. This means that during the 150 million km
travel from the Sun the field diffuses about 1 km!   Very ideal MHD:
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Break-down of the frozen-in condition: 
Magnetic reconnection

Change of magnetic
connection between
two ideal MHD domains

Large  Rm = 0 V L allows formation of thin current sheets,
e.g., solar atmosphere, magnetopause, tail current sheet

Magnetic reconnection is a fundamental
energy release process in magnetized plasmas
but we skip the details on this lecture

Magnetohydrodynamic waves
Alfvén waves

MHD is a fluid theory and there are similar wave modes as in ordinary fluid 
theory (hydrodynamics). In hydrodynamics the restoring forces for perturbations 
are the pressure gradient and gravity. Also in MHD the pressure force leads to 
acoustic fluctuations, whereas Ampère’s force (JxB) leads to an entirely new
class of wave modes, called Alfvén (or MHD) waves. 

As the displacement current is neglected in MHD, there are no
electromagnetic waves of classical electrodynamics. Of course EM waves can
propagate through MHD plasma (e.g. light, radio waves, etc.) and even
interact with the plasma particles, but that is beyond the MHD approximation. 

V1
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Dispersion equation for ideal MHD waves

eliminate J

eliminate p

eliminate E

Consider small
perturbations

and linearize

We are left with 7 scalar equations for 7 unknowns ( m0, V, B)

Find an equation for V1. Start by taking the time derivative of ( )

Insert ( ) and ( ) and introduce the Alfvén velocity as a vector

Look for plane wave solutions

( )

( )

( )

Using a few times we have
the dispersion equation for the waves in ideal MHD
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Propagation perpendicular to the magnetic field:
Now and the dispersion equation reduces to

clearly

And we have found the magnetosonic wave

This mode has many names in the literature:
compressional Alfvén wave, fast Alfvén wave, fast MHD wave

Propagation parallel to the magnetic field: 

Two different solutions (modes)

1) V1 || B0 || k the sound wave
V1

2) V1 B0 || k

This mode is called Alfvén wave or shear Alfvén wave

Propagation at an arbitrary angle

ex

ez

ey

B0

k

Dispersion
equation 

Coeff. of V1y shear Alfvén wave

From the determinant of the remaining equations:

Fast (+) and slow (–) Alfvén/MHD waves
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fast

fast

sound wave

sound wave magnetosonic

magnetosonic

fast

fast

slow

slow

Wave normal surfaces:
phase velocity as
function of 

Some remarks
• Collective effects of free charges determine the behavior of the plasma as 

an electromagnetic medium
• Plasma physics also relies on tools of statistical physics
• Plasma behaves nonlinearly

– Vlasov equation is nonlinear, magnetohydrostatic equilibrium is nonlinear, etc.
– linearizations are often useful, e.g., to find the normal modes of plasma 

oscillations, but the observable plasma oscillations are either damped or grow to 
nonlinear level leading to instabilities

• Plasma is often turbulent
– plasma turbulence is an even more complicated issue than ordinary fluid 

turbulence
• Plasma systems often exhibit chaotic behavior

– concepts of chaos, such as self-organized criticality, intermittence, 
renormalization groups, etc., are important in theoretical plasma physics.


