

Compressible MHD numerical
simulation techniques

Pekka Janhunen, FMI/Space
Graduate Summer School Lecture,

Mariehamn, 16 August 2010

Contents
● MHD (without simplifying assumption of

incompressibility)

● Grid types
● Time discretisation
● Elliptic solvers

● Some future prospects ...

Fluid simulation: Euler equations

Primitive form: Conservative form:

Conservative form guarantees
correct shock speed and preserves
conserved quantities to roundoff
error when discretised using
finite-volume method (FVM)

MHD equations: primitive form

Primitive variable 8-tuple:
(ρ,v,P,B)

The primitive form
is the simplest
to write down
and remember

γ=adiabatic index,
usually γ=5/3;
generally γ=(f+2)/f
where f=number of
degrees of freedom

MHD equations: conservative form

● Variable 8-tuple is now (ρ,p=ρv,U,B)
where U = P/(γ-1)+p2/(2ρ)+B2/(2μ

0
)

MHD: Semiconservative form

Non-conservative
electromagnetic
force and energy flux
added toe
conservative
fluid (Euler) equations

Does not guarantee
correct shock speed
or exact energy and
momentum conservation

Non-idealities in MHD

● note that j = en(v
i
-v

e
); in MHD, v=v

i
, thus B is

frozen into electron flow when Hall-term included
● if diffusion parameters are not constant, they must

appear inside gradient

Hall-term

FVM Godunov-type methods
● FVM = Finite-volume method:

Store volume averages of quantities over each com-
putational cell (instead of pointwise values)

● Equations of the form du/dt = -div(something)
are naturally discretised with FVM using cell interface
fluxes. This yields automatically to a conservative
discretisation.

● Godunov-type method:

● Propagate staircase FVM representation exactly
● Compute new cell averages from propagated state
● Godunov-type method can be written down with in-

terfaces fluxes only (no cell averaging needed)

Riemann solvers
● “Riemann solver” = Solution of initial-value problem with

stepwise initial data

● In 1-D Euler equations, even exact Riemann solver is known

● In 1-D MHD, practically usable exact solver does not exist

● In 2-D and 3-D, no exact solvers, but alternating direction dis-
cretisation works rather well in practice

● An exception: div(B)=0 constraint is problematic in MHD in 2-
D and 3-D since it is essentially multidimensional

MHD wavemodes

MHD wavemodes 2

Hydrodynamic Sod shock tube

1-D approximate Riemann solvers
● Harten-Lax-vanLeer (HLL) solver:

Uses one intermediate state which propa-
gates away from the discontinuity and
which is defined as the spatial average of
the exact Riemann problem solution

● Easy to construct for any equation sys-
tem, only interface fluxes needed

● If continuum problem preserves positivity,
so does the HLL-discretisation (!)

● Drawback: Has high diffusion

● Recent developments: Generalise HLL to
have more intermediate states

1-D approx. Riemann solvers, cont'd
● Roe's approximate Riemann solver:

Linearise equations around the interface
and solve the linearised Riemann problem
exactly
● Need to specify the averaging scheme used (one

possibility: “√ρ-averaging = Roe-averaging”)
● Needs to be able to solve the linearised eigensystem

(eigenvalues, left and right eigenvectors analytically);
this is possible but rather cumbersome for MHD

● Can yield negative pressures if the interface jump is
large

MHD monopole removal methods
● So-called elliptic cleaning:

write B' = B + grad(ΔΦ) and require div(B')=0,
which gives Poisson equation for scalar field
ΔΦ, with div(B) as source term.
May produce negative pressures since P
depends on B. One way to fix is to break
energy conservation locally in these (hopefully
rare) cases.

● Yee-mesh method: store B as interface
surface averages (only normal component
stored on each surface). Breaks conservation,
method no longer fully FVM.

MHD monopole removal methods 2
● “Convect” monopoles to the boundaries

where they are absorbed
– Powell's method: apparently works, but is not

consistent with natural extension of Maxwell's
equations with monopoles

– Janhunen's method tries to fix this

● New, clever methods which try to combine
conservation with div(B)=0 (ongoing
research)

Origin of the monopole problem
● If problem is solved alternating in X,Y,Z, in each

1-D subproblem the 1-D div(B) is just dB
x
/dx etc.

which can be zero only if B-field is trivial. Thus,
the 1-D subproblems always “see” nonzero
div(B), even if the true 3-D div(B) vanishes in
some discrete sense.

● Continuum MHD equations have no solution if
the initial state has nonzero div(B)

● Adding monopoles to MHD theory at the
fundamental level is one possibility, and has
given rise to some new numerical methods

Domain of validity of MHD
● Euler equations hold for scales much larger than

collision mean free path (counterexample: re-
entry vehicle physics)

● Likewise for MHD, but in addition, in the
perpendicular direction it suffices scale to be
much larger than ion Larmor radius

● Non-MHD scale processes, if nonlinear, may
have global consequences that make MHD
invalid at all scales in principle. (This holds also in
fluid dynamics.)

● Mass, momentum and energy conservation
described by MHD are exactly valid. To the extent
these fix the solution, MHD is good.

MHD implementation issues
● Serious MHD code typically must use some form

of grid adaptation, which inevitably makes the
implementation rather complex.

● To handle the complexity, careful planning and
good language (C++) are needed. Heavy hand-
optimisation of time-critical code, although
desirable, is not always realistic because of the
complexity.

● MHD is never very simple to program, not even
on uniform grid. Even in fluid dynamics there has
been room for commercial software industry
(Fluent, Fidap, Elmer...), and FD is just a subset
of MHD.

Adaptive mesh techniques
● Grid types

● uniform grid
● stretched or deformed uniform grid
● cell-by-cell hierarchically refined cubic grid
● block-by-block refined, locally uniform grid
● fully general grid containing arbitrary-shaped cells

● Grid can be fixed in time (adapted grid) or change
dynamically during the run (adaptive grid). In the latter
case, the grid refinement and coarsening may be
based on the solution alone (fully automatic) or
include a user-specified component (semiautomatic).

Uniform grid

Stretched grid

Hierarchical Cartesian (HC) grid

Hierarchically refined cubic grid

Block-refined grids

● Block-refined grids are locally uniform and
thus fast to traverse; on the other hand there
is some overhead because some cells are
refined unnecessarily

(csem.engin.umich.edu/docs/)

General grid

General grid

From Bern, Eppstein and Gilbert, “Provably good mesh generation”

Anisotropic, general grid

From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”

This looks nice, but
has one drawback
still: it is triangular.

Recall that hexahe-
dral grids typically
work better numer-
ically.

Detail of the previous

From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”

 From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”

2-D supersonic flow channel

From Frey and Alauzet, “Anisotropic mesh generation for
transient flows simulations”

Local zoom of the previous

From Frey and Alauzet, “Anisotropic mesh generation for
transient flows simulations”

AMR = Adaptive Mesh Refinement

(www.icase.edu/docs/hilites/jjq/images/amr.gif)

Comments on grid types
● Rectangle/cubic/hexahedral grids typically work better

numerically than triangle/tetrad/simplex grids. The reasons
are not too well known.

● Computer time and memory saving due to use of adaptive
grid types can be huge, and increases with problem size.

● Having said that, it is also true that the approximation quality
never improves by removing grid points.

● In given CPU-time and memory, however, use of adaptive
grid is likely to be the optimal solution (sometimes by quite a
large margin).

Time discretisation
● Time discretisation can be explicit or implicit.
● In explicit scheme, timestep at a cell must be

shorter than fastest wave travel time across cell
(the Courant condition, or CFL condition).

● The maximum usable timestep may vary widely
across the grid, because both Alfven speed and cell
size differ. To save computing time, one may use
temporal subcycling to take short steps only where
needed.

● Implicit MHD has been studied and to some extent
used by the Michigan group.
● Need to solve large nonlinear system by Newton

iterations → convergence not foolproof

Parallelisation
● In large codes, parallelisation is usually needed

nowadays.

● Most widely used parallelisation strategy is domain
decomposition, i.e. each processor owns a specific
domain and handles all computation in that domain.
Domain boundaries may move or remain fixed,
depending on the application.

● Domain-decomposed MHD on uniform or stretched
grids has been in use for some years.

● How to combine domain decomposition with
adaptive gridding has been an active research topic
for the last 5-10 years

Elliptic equations
● Types of elliptic equations:

● Poisson
● Separable coefficients (Poisson and Helmholz in

spherical coordinates, e.g.)
● General elliptic equations (coefficients depend on all

coordinates in non-factorable way)
● Where they arise from:

● Electrostatic particle or Vlasov simulation (Poisson)
● Implicit particle simulation (General elliptic)
● Current continuity equation in ionosphere (General

elliptic)
● div(B) removal in MHD (Poisson)
● Electromagnetic particle sim. (Poisson + Helmholz)

“Rapid” elliptic solvers
● Applicable to constant-coefficient equations or

equations where coefficients factor like f(x) g(y)

● If parallelisation strategy allows it, FFT method is
straightforward and nearly optimal speed (although
not quite; for better, see Hockney and Eastwood
book)

● One of the dimensions can also be done with
tridiagonal solver, which can be parallelised better
than FFT e.g. by pipelining

● Equally important than speed is the fact that the
FFT/tridiag methods are usually quite stable and
produce reliable answer

Iterative elliptic solvers
● If rapid solvers are not applicable, iterative solvers

must be used

● There are many (Gauss, Gauss-Seidel, SOR, ADI, SIP,
multigrid,...), but only one really works well: the
Conjugate Gradient (or Bi-CG) algorithm

● Look up the pseudocode from Numerical Recipes and
implement in your language
● It's beautiful, relatively simple and very general!

● In many cases you don't even need a preconditioner
● But restarting the algorithm every now and then is

simple to program and may be beneficial also
● CG has applications also in data analysis (e.g. auroral

tomography)

About roundoff error in general
● When grids become larger, roundoff error becomes

more and more of a problem

● The problem is especially prominent with elliptic
solvers

● For example, the SIPSOL solver works very well up to
grid sizes about 50x50; for larger than that, it often
does not converge at all

● It is easy to generate example problems (e.g., just by
using random number coefficients) where any known
elliptic solver fails to converge

● Robustness is much more severe problem than what
you get by e.g. reading “Numerical Recipes” (which is
otherwise very recommendable book!)

Future prospects of simulations
● Simulations will probably separate into two disciplines:

● (1) Quick solution of problems using self-written simple
programs on your PC or laptop

● (2) Large, professional-quality parallelised software
systems emerge for attacking challenging problems

● Since CPU speed increases:
● Importance of numerical stability and robustness will

increase
● Importance of grid adaptivity will increase
● Importance of Vlasov simulation will increase
● Importance of multiphysical problems will increase

Some advice
● Computing speed grows exponentially with time.

Thus every year, some problems turn from non-
solvable to solvable. This has been the situation
ever since the first computers were built.

● However, not all relevant problems are solved
during the year they first become solvable!

● Thus, there are physically relevant problems that
are easy to simulate nowadays, which would
have been at “grand challenge” class 10-20
years ago, but which nobody yet simulated.

● Thus, while hard problems are challenging, do
not ignore the easy ones!

Prospects in the application domain
● In plasma physics, simulation models have not yet

reached the maturity of other “normal” physics:
● In my opinion this is mainly due to the fact the plasma

physics should really be done in 6-D phase space.
● For an arbitrary planet, shape and size of

magnetosphere is simulated correctly, but not such
processes as rate of atmospheric erosion or coherent
radio output power (for the latter two, predicting even the
correct order of magnitude is hard)

● Compare this to climate simulation (neutral fluid
dynamics with radiation), where e.g. global temperature
comes out correctly to ~1 % or better

● Plasma is inherently difficult, both in theory, and to
simulate.

Quantifying plasma difficulties
● In neutral fluid, we have the sound wave and the

entropy wave (contact discontinuity). Sound is typically
approximated away in geophysical flows.

● In MHD, the sound wave splits into slow, Alfven and
fast magnetosonic wave. Propagation properties
depend on B-field direction.

● In real (i.e. kinetic-based) plasma physics, we have
almost too many wave modes to list and remember:
● whistler waves (modified fast magnetosonic)
● ion acoustic waves
● ion Bernstein waves
● lower and upper hybrid waves
● etc., etc., (e.g., all electron modes missing from this

list...)

Importance of plasma in space
● Gravity governs the universe, but plasma physics has its role to play

everywhere. Many of the nontrivial questions in space are plasma-
physical:

● reconnection and its resulting particle acceleration

● shock acceleration

● dynamo action (magnetic fields of stars, planets, magnetars..)

● details of gamma ray bursts, gamma flares, supernovas

● details of solar system formation

● details of stellar evolution (loss of angular momentum?)

● primordial magnetic fields (are there any?)

● Many of these have astrobiological dimension, e.g:

● stability of planetary atmospheres on low-mass planets&stars

● details of life-threatening supernovas and gamma ray bursts

● strength of flares on lighter-than-Sun stars

Importance of plasma in space 2
● To attack some of these questions, we need multiphysical

advanced simulations, together with good physical
understanding of their results.

● For example, for stars: “relativistic or non-relativistic MHD
with gravity, radiation and particle physics & good
equations of state, parallelised on automatically adapted
grid” would be high on the wish list

● Or, for planets: May I have one of your “parallelised
Vlasov solvers with anisotropically adaptive grid, with
neutral collisions and charge-exchange processes and
modelled small-scale wave-electron interactions” (with
home delivery, please)

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

