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Fluid simulation: Euler equations

Primitive form: Conservative form:

Conservative form guarantees
correct shock speed and preserves
conserved quantities to roundoff
error when discretised using
finite-volume method (FVM)



  

MHD equations: primitive form

Primitive variable 8-tuple:
(ρ,v,P,B)

The primitive form
is the simplest
to write down
and remember

γ=adiabatic index,
usually γ=5/3;
generally γ=(f+2)/f
where f=number of
degrees of freedom



  

MHD equations: conservative form

● Variable 8-tuple is now (ρ,p=ρv,U,B)         
where U = P/(γ-1)+p2/(2ρ)+B2/(2μ

0
)



  

MHD: Semiconservative form

Non-conservative
electromagnetic
force and energy flux
added toe
conservative 
fluid (Euler) equations

Does not guarantee
correct shock speed
or exact energy and
momentum conservation



  

Non-idealities in MHD

● note that j = en(v
i
-v

e
); in MHD, v=v

i
, thus B is 

frozen into electron flow when Hall-term included
● if diffusion parameters are not constant, they must 

appear inside gradient

Hall-term



  

FVM Godunov-type methods
● FVM = Finite-volume method: 

Store volume averages of quantities over each com-
putational cell (instead of pointwise values)

● Equations of the form du/dt = -div(something)
are naturally discretised with FVM using cell interface 
fluxes. This yields automatically to a conservative 
discretisation.

● Godunov-type method:

● Propagate staircase FVM representation exactly
● Compute new cell averages from propagated state
● Godunov-type method can be written down with in-

terfaces fluxes only (no cell averaging needed)



  

Riemann solvers
● “Riemann solver” = Solution of initial-value problem with 

stepwise initial data

● In 1-D Euler equations, even exact Riemann solver is known

● In 1-D MHD, practically usable exact solver does not exist

● In 2-D and 3-D, no exact solvers, but alternating direction dis-
cretisation works rather well in practice

● An exception: div(B)=0 constraint is problematic in MHD in 2-
D and 3-D since it is essentially multidimensional



  

MHD wavemodes



  

MHD wavemodes 2



  

Hydrodynamic Sod shock tube



  

1-D approximate Riemann solvers
● Harten-Lax-vanLeer (HLL) solver:

Uses one intermediate state which propa-
gates away from the discontinuity and 
which is defined as the spatial average of 
the exact Riemann problem solution

● Easy to construct for any equation sys-
tem, only interface fluxes needed

● If continuum problem preserves positivity, 
so does the HLL-discretisation (!)

● Drawback: Has high diffusion

● Recent developments: Generalise HLL to 
have more intermediate states



  

1-D approx. Riemann solvers, cont'd
● Roe's approximate Riemann solver:

Linearise equations around the interface
and solve the linearised Riemann problem 
exactly
● Need to specify the averaging scheme used (one 

possibility: “√ρ-averaging = Roe-averaging”)
● Needs to be able to solve the linearised eigensystem 

(eigenvalues, left and right eigenvectors analytically); 
this is possible but rather cumbersome for MHD

● Can yield negative pressures if the interface jump is 
large



  

MHD monopole removal methods
● So-called elliptic cleaning:

write B' = B + grad(ΔΦ) and require div(B')=0,
which gives Poisson equation for scalar field 
ΔΦ, with div(B) as source term.
May produce negative pressures since P 
depends on B. One way to fix is to break 
energy conservation locally in these (hopefully 
rare) cases.

● Yee-mesh method: store B as interface 
surface averages (only normal component 
stored on each surface). Breaks conservation, 
method no longer fully FVM.



  

MHD monopole removal methods 2
● “Convect” monopoles to the boundaries 

where they are absorbed
– Powell's method: apparently works, but is not 

consistent with natural extension of Maxwell's 
equations with monopoles

– Janhunen's method tries to fix this

● New, clever methods which try to combine 
conservation with div(B)=0  (ongoing 
research)



  

Origin of the monopole problem
● If problem is solved alternating in X,Y,Z, in each 

1-D subproblem the 1-D div(B) is just dB
x
/dx etc. 

which can be zero only if B-field is trivial. Thus, 
the 1-D subproblems always “see” nonzero 
div(B), even if the true 3-D div(B) vanishes in 
some discrete sense.

● Continuum MHD equations have no solution if 
the initial state has nonzero div(B)

● Adding monopoles to MHD theory at the 
fundamental level is one possibility, and has 
given rise to some new numerical methods



  

Domain of validity of MHD
● Euler equations hold for scales much larger than 

collision mean free path (counterexample: re-
entry vehicle physics)

● Likewise for MHD, but in addition, in the 
perpendicular direction it suffices scale to be 
much larger than ion Larmor radius

● Non-MHD scale processes, if nonlinear, may 
have global consequences that make MHD 
invalid at all scales in principle. (This holds also in 
fluid dynamics.)

● Mass, momentum and energy conservation 
described by MHD are exactly valid. To the extent 
these fix the solution, MHD is good.



  

MHD implementation issues
● Serious MHD code typically must use some form 

of grid adaptation, which inevitably makes  the 
implementation rather complex.

● To handle the complexity, careful planning and 
good language (C++) are needed. Heavy hand-
optimisation of time-critical code, although 
desirable, is not always realistic because of the 
complexity.

● MHD is never very simple to program, not even 
on uniform grid. Even in fluid dynamics there has 
been room for commercial software industry 
(Fluent, Fidap, Elmer...), and FD is just a subset 
of MHD.



  

Adaptive mesh techniques
● Grid types

● uniform grid
● stretched or deformed uniform grid
● cell-by-cell hierarchically refined cubic grid
● block-by-block refined, locally uniform grid
● fully general grid containing arbitrary-shaped cells

● Grid can be fixed in time (adapted grid) or change 
dynamically during the run (adaptive grid). In the latter 
case, the grid refinement and coarsening may be 
based on the solution alone (fully automatic) or 
include a user-specified component (semiautomatic).



  

Uniform grid



  

Stretched grid



  

Hierarchical Cartesian (HC) grid



  

Hierarchically refined cubic grid



  

Block-refined grids

● Block-refined grids are locally uniform and 
thus fast to traverse; on the other hand there 
is some overhead because some cells are 
refined unnecessarily

(csem.engin.umich.edu/docs/)



  

General grid



  

General grid

From Bern, Eppstein and Gilbert, “Provably good mesh generation”



  

Anisotropic, general grid

From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”

This looks nice, but 
has one drawback 
still: it is triangular.

Recall that hexahe-
dral grids typically 
work better numer-
ically.



  

Detail of the previous

From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”



  From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”



  

2-D supersonic flow channel

From Frey and Alauzet, “Anisotropic mesh generation for 
transient flows simulations”



  

Local zoom of the previous

From Frey and Alauzet, “Anisotropic mesh generation for 
transient flows simulations”



  

AMR = Adaptive Mesh Refinement 

(www.icase.edu/docs/hilites/jjq/images/amr.gif)



  

Comments on grid types
● Rectangle/cubic/hexahedral grids typically work better 

numerically than triangle/tetrad/simplex grids. The reasons 
are not too well known.

● Computer time and memory saving due to use of adaptive 
grid types can be huge, and increases with problem size.

● Having said that, it is also true that the approximation quality 
never improves by removing grid points.

● In given CPU-time and memory, however, use of adaptive 
grid is likely to be the optimal solution (sometimes by quite a 
large margin).



  

Time discretisation
● Time discretisation can be explicit or implicit.
● In explicit scheme, timestep at a cell must be 

shorter than fastest wave travel time across cell 
(the Courant condition, or CFL condition).

● The maximum usable timestep may vary widely 
across the grid, because both Alfven speed and cell 
size differ. To save computing time, one may use 
temporal subcycling to take short steps only where 
needed.

● Implicit MHD has been studied and to some extent 
used by the Michigan group.
● Need to solve large nonlinear system by Newton 

iterations → convergence not foolproof



  

Parallelisation
● In large codes, parallelisation is usually needed 

nowadays.

● Most widely used parallelisation strategy is domain 
decomposition, i.e. each processor owns a specific 
domain and handles all computation in that domain. 
Domain boundaries may move or remain fixed, 
depending on the application.

● Domain-decomposed MHD on uniform or stretched 
grids has been in use for some years.

● How to combine domain decomposition with 
adaptive gridding has been an active research topic 
for the last 5-10 years



  

Elliptic equations
● Types of elliptic equations:

● Poisson
● Separable coefficients (Poisson and Helmholz in 

spherical coordinates, e.g.)
● General elliptic equations (coefficients depend on all 

coordinates in non-factorable way)
● Where they arise from:

● Electrostatic particle or Vlasov simulation (Poisson)
● Implicit particle simulation (General elliptic)
● Current continuity equation in ionosphere (General 

elliptic)
● div(B) removal in MHD (Poisson)
● Electromagnetic particle sim. (Poisson + Helmholz)



  

“Rapid” elliptic solvers
● Applicable to constant-coefficient equations or 

equations where coefficients factor like f(x) g(y)

● If parallelisation strategy allows it, FFT method is 
straightforward and nearly optimal speed (although 
not quite; for better, see Hockney and Eastwood 
book)

● One of the dimensions can also be done with 
tridiagonal solver, which can be parallelised better 
than FFT e.g. by pipelining

● Equally important than speed is the fact that the 
FFT/tridiag methods are usually quite stable and 
produce reliable answer 



  

Iterative elliptic solvers
● If rapid solvers are not applicable, iterative solvers 

must be used

● There are many (Gauss, Gauss-Seidel, SOR, ADI, SIP, 
multigrid,...), but only one really works well: the 
Conjugate Gradient (or Bi-CG) algorithm

● Look up the pseudocode from Numerical Recipes and 
implement in your language
● It's beautiful, relatively simple and very general!

● In many cases you don't even need a preconditioner
● But restarting the algorithm every now and then is 

simple to program and may be beneficial also
● CG has applications also in data analysis (e.g. auroral 

tomography)



  

About roundoff error in general
● When grids become larger, roundoff error becomes 

more and more of a problem

● The problem is especially prominent with elliptic 
solvers

● For example, the SIPSOL solver works very well up to 
grid sizes about 50x50; for larger than that, it often 
does not converge at all

● It is easy to generate example problems (e.g., just by 
using random number coefficients) where any known 
elliptic solver fails to converge

● Robustness is much more severe problem than what 
you get by e.g. reading “Numerical Recipes” (which is 
otherwise very recommendable book!)



  

Future prospects of simulations
● Simulations will probably separate into two disciplines:

● (1) Quick solution of problems using self-written simple 
programs on your PC or laptop

● (2) Large, professional-quality parallelised software 
systems emerge for attacking challenging problems

● Since CPU speed increases:
● Importance of numerical stability and robustness will 

increase
● Importance of grid adaptivity will increase
● Importance of Vlasov simulation will increase
● Importance of multiphysical problems will increase



  

Some advice
● Computing speed grows exponentially with time. 

Thus every year, some problems turn from non-
solvable to solvable. This has been the situation 
ever since the first computers were built.

● However, not all relevant problems are solved 
during the year they first become solvable!

● Thus, there are physically relevant problems that 
are easy to simulate nowadays, which would 
have been at “grand challenge” class 10-20 
years ago, but which nobody yet simulated.

● Thus, while hard problems are challenging, do 
not ignore the easy ones!



  

Prospects in the application domain
● In plasma physics, simulation models have not yet 

reached the maturity of other “normal” physics:
● In my opinion this is mainly due to the fact the plasma 

physics should really be done in 6-D phase space.
● For an arbitrary planet, shape and size of 

magnetosphere is simulated correctly, but not such 
processes as rate of atmospheric erosion or coherent 
radio output power (for the latter two, predicting even the 
correct order of magnitude is hard)

● Compare this to climate simulation (neutral fluid 
dynamics with radiation), where e.g. global temperature 
comes out correctly to ~1 % or better

● Plasma is inherently difficult, both in theory, and to 
simulate.



  

Quantifying plasma difficulties
● In neutral fluid, we have the sound wave and the 

entropy wave (contact discontinuity). Sound is typically 
approximated away in geophysical flows.

● In MHD, the sound wave splits into slow, Alfven and 
fast magnetosonic wave. Propagation properties 
depend on B-field direction.

● In real (i.e. kinetic-based) plasma physics, we have 
almost too many wave modes to list and remember:
● whistler waves (modified fast magnetosonic)
● ion acoustic waves
● ion Bernstein waves
● lower and upper hybrid waves
● etc., etc., (e.g., all electron modes missing from this 

list...)



  

Importance of plasma in space
● Gravity governs the universe, but plasma physics has its role to play 

everywhere. Many of the nontrivial questions in space are plasma-
physical:

● reconnection and its resulting particle acceleration

● shock acceleration

● dynamo action (magnetic fields of stars, planets, magnetars..)

● details of gamma ray bursts, gamma flares, supernovas

● details of solar system formation

● details of stellar evolution (loss of angular momentum?)

● primordial magnetic fields (are there any?)

● Many of these have astrobiological dimension, e.g:

● stability of planetary atmospheres on low-mass planets&stars

● details of life-threatening supernovas and gamma ray bursts

● strength of flares on lighter-than-Sun stars



  

Importance of plasma in space 2
● To attack some of these questions, we need multiphysical 

advanced simulations, together with good physical 
understanding of their results.

● For example, for stars: “relativistic or non-relativistic MHD 
with gravity, radiation and particle physics & good 
equations of state, parallelised on automatically adapted 
grid” would be high on the wish list

● Or, for planets: May I have one  of your “parallelised 
Vlasov solvers with anisotropically adaptive grid, with 
neutral collisions and charge-exchange processes and 
modelled small-scale wave-electron interactions” (with 
home delivery, please)
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