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Single-particle motion



Equation of motion

Charged particles obey the equation of motion

dp/dt = q (E + v x B) + mg

where m, q, p and v are the particle mass, charge, momentum and 
velocity, and E, B and g are the electric, magnetic and gravitational 
field.

Gravitational field is typically negligible, since we usually consider 
compact acceleration regions (mgL << W).

dW/dt = dp/dt • v = q E • v, so electric fields are always required 
for particle acceleration. They can be either

potential electric fields: div E = ρq

induced electric fields: rot E = -∂B/∂t



Particle motion in slowly varying magnetic 
fields

In a constant magnetic field B = B ez, motion in the plane 
perpendicular to B is strictly periodic:

x = rL cos (υ0-Ωt) 
y = rL sin (υ0-Ωt); Ω = qB/γm,  rL = v/|Ω|

=> Action variables Jx = ∫o Px dx and Jy = ∫o Py dy are constants.

Here P = p + qA is the canonical momentum related to the Cartesian 
position vector r and A = -B y ex is the vector potential of the 
magnetic field. Thus,

Jy = ∫o γm vy dy = ∫oγm vy
2 dt = γmv2 π/|Ω| = (π/|q|)(p2/B).

If vz ≠ 0, p should be replaced by the momentum in the plane 
perpendicular to the field 

=>   p2 sin2 α/B = constant;   cos α := μ = v||/v

If B varies slowly, then p2 sin2 α/B is an adiabatic invariant. B

v

α



Wave–particle interactions

Wave–particle interactions in space plasmas govern the transport of 
particles in rapidly fluctuating electromagnetic fields

Consider particle motion in a monochromatic plasma wave 
propagating along the field line. In wave frame

Eq. of motion along the mean field B0 is

Solution to 1st order in B1/B0 (with vz = vμ), i.e., in quasilinear theory
(QLT) is:

which gives <∆µ> = 0, when averaged over the randomly distributed 
phase ψ.



Square and average over Ψ

Taking the limit Δt -> ∞ gives the
pitch-angle diffusion coefficient

which has resonance at k = kr := Ω/vμ !

Take B1
2 = I(k) dk and integrate over the wavenumber spectrum

Standard QLT result: particle motion in spatially fluctuating field is 
diffusion in pitch-angle due to scattering off resonant plasma waves

Taking finite wave frequencies into account, resonance condition 
becomes

ω(k) - kvμ = -Ω

∆t = 8Ω-1

∆t = 4Ω-1

∆t = 2Ω-1

∆t =  Ω-1



Single-particle motion: summary

In slowly varying fields (in gyromotion scales), particles conserve 
their first adiabatic invariant:

p2 sin2 α / B  =  constant

If B = B(x), also p is constant, so then (s along B)

(1 – μ2) / B  =  constant  =>  dμ/dt = – (1–μ2) (v/2B) (∂B/∂s)

A mirror force directed away from strong fields!

If B = B(t) and || z, then vz = constant, since induced electric field is in 

the xy plane. Thus, choose  vz = 0 to get

p2 / B = constant     (Betatron acceleration)

In rapidly varying fields, particles interact with the fluctuations 
resonantly and diffuse in pitch-angle,

Dμμ = (π/4) |Ω| (1-μ2) |kr| I(kr) / B2

kr = Ω/(vμ);

where μ and v are measured in the frame where the fluctuation is 
static.



Example: focused transport equation

As a first approximation, the interplanetary
magnetic field is an Archimedean spiral:

Thus,

Adding the field fluctuations as pitch-angle diffusion gives the 
kinetic equation for solar energetic particles in the interplanetary 
space, i.e., the focused transport equation, as

More complete version contains also adiabatic energy changes

spiral angle
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Example solution (impulsive injection)



Basic particle acceleration mechanisms



DC electric fields

“Infinitely” conducting plasma → E = – V x B ┴ V, B

Particle acceleration by DC electric field requires either

E · B ≠ 0      (resistive plasma),

B ≈ 0          (magnetic null point / line),  or

Strong curvature / gradient drifts across the magnetic field

Available, e.g., in reconnection regions



static current sheet, E = 0 reconnecting current sheet, E ≠ 0

Particle motion relatively straightforward to compute

Challenges in the self-consistent description of the E-field

reconnection in collisionless plasmas (no classical resistivity) 

3-D reconnection fields



Shock-drift acceleration (Hudson 1965)
operates in MHD shocks (discontinuities)

particles energized by the convective DC electric field

net gradient + curvature drift along the E-field for ions and against 
the E-field for electrons

single interaction provides only a small energy gain, W2 ~ (B2/B1)·W1

in oblique shocks, largest energy gains for reflected ions

ions electrons

B1 B2

V1 V2



Shock drift acceleration in inhomogeneous 
magnetic fields

mirror
force

inertial
force

Sandroos & Vainio (2006: A&A 455, 685)

Single encounter with an MHD shock does not yield large energies

Shock drift acceleration in inhomogeneous upstream magnetic field

inhomogeneous upstream fields can 

trap particles close to the shock 

resulting in multiple interactions

with the shock

trapped particles gain energy if

dB1 / dt > 0 (W/B1 = const.), or

Θn → 90º   (v|| ~ Vs/cos Θn → c)

both possible in coronal shocks



Acceleration in curved upstream field

Sandroos & Vainio (2006: A&A 455, 685)



Shock surfing acceleration (Sagdeev 1966)

Kinetic collisionless shock: charge 
separation caused by ion inertia 
leads to a cross-shock potential 
field

Ex=-dυ/dx,

which points towards the upstream 
region

Ex-field estimated by

e δυ < ½miV
2, δx > c/ωpe

Part of the incoming ions get 
reflected by Ex repeatedly and, 
thus, accelerated in -y direction 
along the convective Ey field until

-e vyBz ~ e Ex

MeV energies in coronal shocks?



Stochastic acceleration

Wave-particle interactions with EM plasma waves

Cyclotron resonance condition   ω = v|| k + n Ω where  n Є ZZ

Dispersion relation:  ω = vp(k) k

Multiple resonances → acceleration possible

Faraday's law: ω Bw = k Ew

→ wave-frame (ω = 0):

k || Ew (electrostatic wave), or

Ew = 0  (electromagnetic wave)

multiple EM resonances → momentum diffusion
k

ω

Ωp
EMIC- EMIC+

Wh-Wh+

ω/k = + VA

ω/k = - VA

-VA +VA
v||

v
┴



Example: Stochastic acceleration and 
impulsive flares

Puzzle: impulsive solar flares seem 
to produce a huge overabundance of 
accelerated 3-He over alphas

Thermal protons and alphas damp 
resonant waves →

acceleration of protons and alphas 
requires supra-thermal energies

3-He and heavies not abundant 
enough to damp resonant waves →
effective injection into the 
acceleration process

So far applied to impulsive flares:

Explains abundance enhancements of 

3-He in impulsive flares

Very sensitive to fpe/fce

k

ω

Ωp

Ω4He

Ω3He

ΩFe10+

Petrosian & Liu (2004: ApJ 610, 550)

Liu & al. (2004: ApJ 613, L81)

Liu & al. (2006: ApJ 636, 462)



Liu & al. (2006: ApJ 636, 462)



Diffusive shock acceleration

Particles crossing the shock

many times (because of strong

scattering) get accelerated

Vsh

w1 = u1+vA1

w2

v||Δw = w2 - w1

dv/dt > 0

→ particle

acceleration

v = particle velocity in the ambient AW frame

upstream →

downstream

downstream →

upstream
Vshv



DSA Spectrum (e.g., Bell 1978)

The mean momentum after n shock crossings

Probability of returning to the shock after n crossings

Thus,

Canonical power law in
momentum, depends
only on shock compression
ratio r = u1/u2

here, u = Vsh - w



DSA spectral index does not depend on geo-
metry, but the rate of DSA does (Drury 1983)

dp/dt = p [(rsc-1)/3rsc] · (u1x
2 / Dxx)

Dxx = Dcos2θn;   D = Λv/3

Time available  tacc = (Δs/u1x) cos θn

For a given Λ

vmax ~ (Δs/Λ) · (u1x/cos θn)

But:  Injection of protons requires

vinj ~ u1x/cos θn

Thus, quasi-perpendicular shocks 
- require higher injection energies but 
- accelerate particles to higher energies
than quasi-parallel shocks

Geometry of diffusive shock acceleration

shock

open

field

lines

solar

surface

Vainio (2006)

rsc = scattering-center

compression ratio



Selection effect of shock geometry

slow acceleration

fast acceleration

Tylka & al. (2005: ApJ 625, 474)

Accelerated
spectrum



Plausible sites of particle acceleration in 
solar plasmas



Bow shocks and refracting shocks



Reconnecting current sheets and turbulent 
sheath regions

Magara et al. (2000: ApJ 538, L175)

· Shocks amplify and generate
bi-directional wave fields

→ stochastic acceleration
possible in turbulent sheaths

· DC E-fields (and turbulence)
in current sheets

Vainio & Schlickeiser (1999: A&A 343, 303)



Flare loops

Reames (2000)



Test-particle modeling of particle 
acceleration using the Monte Carlo method



Test-particle-orbit simulations

Probably the simplest way to study the evolution of accelerated particle 
populations is to perform test-particle-orbit simulations

Take the EM fields as prescribed fields of r and t

Trace a population of charged particles (using a standard Lorentz-
force solver) in the fields keeping track of their position and 
momentum as a function of time

Collect the statistics at some intervals of time and study how the 
particle distribution evolves

Problem: Any acceleration model that involves resonant wave-particle 
interactions needs to resolve the fluctuating fields at sub-Larmor scales

Strongly limits the use of test-particle-orbit simulations in cases, 
where the acceleration region is spatially extended (L >>> rL) or the 
acceleration process is slow (τ >>> Ω-1)

DSA is a prime example of such a mechanism



Monte Carlo simulations

If the size of the system is large, it is not possible to keep track of 
Larmor motion -> use guiding-center theory to propagate particles in the 
large-scale fields

How to implement the effect of small-scale fluctuations? Use quasilinear
theory to account for the effects of turbulent fluctuations, I(k)

Thus, particle motion is modeled as a combination of deterministic motion 
in large scale fields and stochastic motion (scattering) in small scale fields

Advantage: solver is no longer limited by time steps ∆t << Ω-1 since
gyromotion is not followed at all

Limitation: the treatment is (formally) limited to weak turbulence:

δB2 ~ k I(k) << B2 at all k > Ω/v

However, qualitatively correct results can be obtained even for 

δB2 ~ B2



Example: particle motion in magnetostatic
slab-mode turbulence

Consider a system with a homogeneous mean magnetic field B0 = B0 ez and 
a turbulent field B1 = B1x(z) ex + B1y(z) ey with B1 << B0.

Let the statistics of the turbulent field be same in both x and y and be 
represented by a power spectrum

I(k) = I0 (k/k0)
-q,   k > k0

Particle motion in the regular field is simply described by

dz/dt = vμ ->   Δz = vμ Δt

Particle motion in the turbulent field is diffusion in μ. It can be modeled in 
several ways. In general, a distribution under pitch-angle diffusion evolves 
according to



Thus, the diffusion equation is equivalent to the Fokker-Planck equation:

We can now identify the mean displacement and mean square displacement 
as 

If the time steps are small enough (to keep changes in μ small), we can 
thus write

where W is a normally distributed random number. This allows one to 
construct a 1st order Euler solver for the stochastic particle motion.



Generating “random” numbers on a 
computer

As all stochastic simulations need some sort of random numbers, let us 
take a brief look at issues that need to be understood

Firstly, one needs a good random number generator that produces 
(pseudo) random numbers between 0 and 1

Never use random generators that you do not have documentation for. 
Many of them are simply flawed.

The simplest generators are linear congruental generators (LGC):

Xn+1 = (a Xn + c)  mod  m,        Rn = Xn /m

where a, c and m are (integer) parameters. Choosing the parameters badly 
will lead to poor results.

One of the “recommendable” LCGs is the Park-Miller “Minimal Standard” 
(PMMS) generator obtained with a=16807, m=231-1, c=0. Its properties are 
well known and it passes the most obvious statistical tests quite well.

It is recommendable to test the code using a few different types of 
generators (PMMS, ran2, Mersenne twister). If the results agree, the one 
with the lowest running time is probably fine.



Sampling from different distributions

Assuming that you have a good pseudo-random number generator at hand, 
you often still need to draw numbers from other than uniform distribution.

Example: Generating random numbers distributed exponentially in [0,∞).

Let y be a random variable with a probability density

f(y) = exp(-y) 

Let F be a function of y and ass. dF = f(y) dy with F(0)=0.
Thus, F is a uniformly distributed variable in [0,1) and

F(y) = ∫
0

y f(y) dy = 1-exp(-y)   =>   y = -ln (1-F)

Thus, F ~ Uni[0,1) => X = 1-F ~ Uni(0,1] => y = -ln X ~ Exp(μ=1).

Generating normally distributed numbers (two at a time) can be done 
easily as well. Using polar coordinates x=r cosθ; y=r sinθ, we get

f(y,x) dxdy ~ exp{-½(x2+ y2)} dxdy = exp{-½r2} rdrdθ = ½exp{-½r2} d(r2)dθ

r2 ~ Exp(μ=2) and θ ~ Uni(0,2π) => x, y ~ N(μ=0,σ=1).



Efficiency issues

Although simple, the 1st order Euler solver is not very efficient in terms of 
computational time, since the method works accurately only if the 
displacements in μ are very small. This is rather limiting, since Δμ ~ √Δt.

In special cases for Dμμ, much more efficient solvers can be constructed 
from more accurate solutions of the pitch-angle diffusion equation.

In the case of isotropic angular diffusion,

Dμμ ~ 1 – μ2,

the solution of the angular distribution can be given analytically.

The equivalent solution for μ after each scattering is

where Rn is a sequence of random numbers 
distributed uniformly in (0,1]. The angles 
θ and υ are the scattering angles relative to
the propagation direction prior to scattering

υ

θ
α0

α



Particle propagator under isotropic pitch-
angle diffusion



Particle acceleration - regular E

So far,  we considered a very simple model with v = const. (No E field.)

Depending on the acceleration mechanism, the best implementation of 
particle acceleration to a MC simulation varies.

For E perpendicular to B0 (and not too large), it is possible to make a 
coordinate transformation to a frame, where E vanishes (at least locally) 
and consider the propagation step there. Note that in general the frame is 
not an inertial frame.

Consider then a large-scale E || B0. Thus, the regular motion between 
magnetic scatterings can be integrated exactly (for E = const):
Just replace step 3 above by

After the regular motion, magnetic scattering can be performed as above.



Particle acceleration – fluctuating E

Effects of turbulent E are more complicated to implement and, again, the 
best choice of a method depends on the particular case.

We will, as a first approximation, consider only electric fields that are due 
to MHD-wave and fluid-scale turbulent processes. The turbulent electric 
field in the rest frame of the background plasma (V0 = 0) is typically

E1 ~ V1 B0 ~ VA (B1/B0) B0 = VA B1 ,

where V1 is the (turbulent) plasma velocity fluctuation.

Note that VA << v, if energetic particles are considered, so v B1 >> E1 !
Thus, as the lowest order approximation, scattering can be considered 
elastic (v = const.) in the local background plasma frame.

Thus, to implement the effect of such fields, all one has to do is to 

transform to the local plasma frame before each scattering

perform the scattering as in magnetostatic turbulence

transform back to the laboratory frame.

This implements, e.g., the 1st order Fermi mechanism at shocks.



Stochastic acceleration

Stochastic acceleration occurs, because the particle is able to scatter off 
waves propagating at different phase velocities simultaneously.

To implement this effect one has to consider scattering off at least two 
wave fields (e.g., with ω = +- VA k) after each propagation step.

In the frame co-moving with the wave, the field is again static (no E-
field). Thus, in the wave frame scattering is elastic.

Thus, after each propagation step,

transform to the local wave frame before each scattering (at least 
two scatterings after each propagation step)

perform scatterings as in magnetostatic turbulence

transform back to the laboratory frame.

This implements the stochastic acceleration mechanism


