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Outline

Where do we need incompressible MHD?
Theory of HD&MHD
Turbulence
Numerical methods for HD
Numerical methods for MHD
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Heliosphere

Closest available space plasma:
The solar wind

includes shocks
and density fluctuation

The large scale evolution seems to
be compressible. . .
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Heliosphere

. . . but in the frame of the solar wind,
we find

a turbulent spectrum
Alfvén waves travelling

Sounds like incompressible
turbulence!
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Interstellar medium

Infamous picture
this is usually used to suggest
turbulence
it really shows density
fluctuations
Density fluctuations? That’s
compressible turbulence?
Really?
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Interstellar medium

Damping rates
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Interstellar medium

So is this incompressible MHD?
Wave damping suggests that for large k only Alfvén waves survive
Density fluctuations suggest there is compressible turbulence
Two solutions:
Alfvén turbulence with enslaved density fluctuations
Not waves but shocks govern the ISM
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Euler Equation
Force on a volume element of fluid

F = −
∮

p df (1)

Divergence theorem

F = −
∫
∇p dV (2)

Newton’s law for one volume element

m
du
dt

= F (3)

Using density instead of total mass∫
ρ

du
dt

dV = −
∫
∇p dV (4)

ρ
du
dt

= −∇p (5)

⇒ Lagrange picture
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Euler Equation
Changing to material derivative

du =
∂u
∂t

dt + (dr∇)u (1)

⇒ du
dt

=
∂u
∂t

+ (u∇)u (2)

Euler’s equation
∂u
∂t

+ (u∇)u = −1
ρ
∇p (3)

Here the velocity is a function of space and time

u = u(r , t) (4)

This can now be applied to the momentum transport equation

∂

∂t
(ρui ) = ρ

∂ui

∂t
+ ui

∂ρ

∂t
(5)
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Euler Equation

Partial derivative of u is known from Euler

∂ui

∂t
= −uk

∂ui

∂xk
− 1
ρ

∂p
∂xi

(1)

⇒ ∂

∂t
(ρui ) = −ρuk

∂ui

∂xk
− ∂p
∂xi
− ui

∂ρuk

∂xk
(2)

= − ∂p
∂xi
− ∂

∂xk
(ρuiuk ) (3)

= −δik
∂p
∂xk
− ∂

∂xk
(ρuiuk ) (4)

∂ρui

∂t
= − ∂

∂xk
Πik (5)

Πik = −pδik − ρuiuk (6)

Πik = stress tensor
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Continuity equation

∂

∂t

∫
ρ dV = −

∮
ρu dV (7)∫ (

∂ρ

∂t
+∇·(ρu)

)
dV = 0 (8)

∂ρ

∂t
+∇·(ρu) = 0 (9)

For incompressible fluids (ρ=const)

∇·u = 0 (10)
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Viscid fluid

Πik = pδik + ρuiuk − σik (11)

σik = shear stress
For Newtonian fluids this depends on derivatives of the velocity

σik = a
∂ui

∂xk
+ b

∂uk

∂xi
+ c

∂ul

∂xl
δik (12)

Coefficients have to fulfill
no viscosity in uniform fluids(u=const)
no viscosity in uniform rotating floew

It follows a = b

σik = η

(
∂ui

∂xk
+
∂uk

∂xi
− 2

3
δik
∂ul

∂xl

)
+ ζδik

∂ul

∂xl
(13)
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Viscid fluid

Stress tensor for incompressible fluids

∂ui

∂xi
= 0 (11)

⇒ σik = η

(
∂ui

∂xk
+
∂uk

∂xi

)
(12)

∂σik

∂xk
= η

∂2ui

∂x2
k

(13)

And we find the Navier-Stokes-equation :

∂u
∂t

+ (u∇)u +∇p = ν∆u (14)

ν = η
ρ = Viscosity

Pressure
∆p = −(u∇)u + ν∆u (15)
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Vorticity

Using ∇·u = 0 one can take the curl of the Navier-Stokes-equation ,
resulting in a PDE for ω = ∇×u

∂

∂t
(∇×u)−∇× (u × (∇×u)) = −ν∇× (∇× (∇×u)) (16)

⇒ ∂ω

∂t
= (ω∇)u + ν∆ω (17)

ω is quasi-scalar for 2d-velocities
We need the stream function Ψ to derive velocities

ω = ∇×u (18)
u = ∇×Ψ (19)

∆Ψ = −ω (20)
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The MHD equations

Compressible MHD

∂ρ

∂t
+∇ · (ρv) = 0

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇p − 1
4π

B ×∇× B

∂B
∂t

= ∇× (v × B)

Solutions
Different wave modes are solutions to the MHD equations

Alfvén modes (incompressible, aligned to the magnetic field)
Fast magnetosonic (compressible)
slow magnetosonic (compressible)
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The MHD equations

Incompressible MHD

∇ · v = 0

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇p − 1
4π

B ×∇× B

∂B
∂t

= ∇× (v × B)

Solutions
Different wave modes are solutions to the MHD equations

Alfvén modes (incompressible, aligned to the magnetic field)
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The MHD equations

Elsasser variables

w− = v + b − vAez

w+ = v − b + vAez

⇒ v =
w+ + w−

2

⇒ b =
−w+ + w− − 2vAez

2

Solutions
Different wave modes are solutions to the MHD equations

Alfvén modes (incompressible, aligned to the magnetic field)
w± correspond to forward/backward moving waves
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Short review of Kolmogorov

Kolmogorov assumes energy transport which is scale invariant
Time-scale depends on eddy-turnover times
Detailed analysis of the units reveals 5/3-law

Simplified picture – but enough to illustrate what we are doing next
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Short review of Kolmogorov

Kolmogorov assumes energy transport which is scale invariant
Time-scale depends on eddy-turnover times
Detailed analysis of the units reveals 5/3-law

Simplified picture – but enough to illustrate what we are doing next

Dimensional Argument

5/3-law can be derived by assuming scale independent energy transport
and dimensional arguments.
This gives a unique solution.
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Kraichnan-Iroshnikov

General idea: Turbulence is governed by Alfvén waves
Collision of Alfvén waves is mechanism of choice
Eddy-turnover time is then replaced by Alfvén time scale
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Kraichnan-Iroshnikov

Energy E =
∫

(V 2 + B2)dx is conserved
Cascading to smaller energies
Dimensional arguments cannot be used to derive τλ = λ/vλ
Dimensionless factor vλ/vA can enter
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Kraichnan-Iroshnikov
Wave-packet interaction

w− = v + b − vAez

w+ = v − b + vAez

Solutions: w± = f (r ∓ vAt)

Figure: Packets interact, energy is conserved, shape is not
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Kraichnan-Iroshnikov

Packet interaction

Amplitudes δw+
λ ∝ δw

−
λ ∝ δvλ ∝ δbλ

during one collision

∆δvλ ∝ (δv2
λ/λ)(λ/vA)

Number of collision required to change wave
packet

N ∝ (δvλ/∆δvλ)2 ∝ (vA/δvλ)2

τIK ∝ Nλ/vA ∝ λ/δvλ(vA/δvλ)

EIK = δv2
k k2 ∝ k−3/2
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Goldreich-Sridhar

3/2 spectrum not that often observe
Let’s get a new theory
We come back to Kraichnan-Iroshnikov: Alfvén waves govern the
spectrum
Turbulent energy is transported through multi-wave interaction
Goldreich and Sridhar made up a number of articles dealing with this
problem
They distinguish between strong and weak turbulence
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Goldreich-Sridhar

Weak Turbulence

What is weak turbulence?
Weak turbulence describes systems, where waves propagate if one
neglects non-linearities. If one includes non-linearities wave amplitude will
change slowly over many wave periods.
The non-linearity is derived pertubatevily from the interaction of several
waves
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Goldreich-Sridhar

Weak Turbulence
Goldreich-Sridhar claim that Kraichnan-Iroshnikov can be seen as
three-wave interaction of Alfvén waves
They also believe, this is a forbidden process, since resonance
condition reads

kz1 + kz2 = kz

| kz1 | + | kz2 | = | kz |

4-wave coupling is now their choice!
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Goldreich-Sridhar

Weak Turbulence

k1 + k2 = k3 + k4

ω1 + ω2 = ω3 + ω4

⇒ k1z + k2z = k3z + k4z

k1z − k2z = k3z − k4z

Parallel component unaltered⇒ 4-wave interaction just changes k⊥ of
quasi-particles
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Goldreich-Sridhar

Weak Turbulence

| δvλ |∼
∣∣∣∣d2vλ

dt2 (kzvA)−2
∣∣∣∣

d2vλ
dt2 ∼

d
dt

(k⊥v2
λ) ∼ k⊥vλ

dvλ
dt
∼ k2
⊥v3

λ

since (v · ∇) ∼ vλk⊥ for Alfvén waves∣∣∣∣δvλvλ

∣∣∣∣ ∼ (k⊥v⊥
kzvλ

)2

⇒ N ∼
(

k⊥v⊥
kzvλ

)4

∑
v2
λ =

∫
E(kz , k⊥)d3k

constant rate of cascade⇒ E(kz , k⊥) ∼ ε(kz)vak−10/3
⊥

This spectrum now hold, when the velocity change is small
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Goldreich-Sridhar

Strong Turbulence
Assume perturbation vλ on scales λ‖ ∼ k−1

z and λ⊥ ∼ k−1
⊥

ζλ ∼
k⊥vλ
kzvλ

Anisotropy parameter

N ∼ ζ−4
λ

isotropic excitationk⊥∼kz∼L−1

∼
(

vA

vL

)4

(k⊥L)−4/3

Everything is fine as long as ζλ � 1
GS assume frequency renormalization when this is not given
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Goldreich-Sridhar

Strong Turbulence
When energy is injected isotropically ζL ∼ 1 we have a critical balance
⇒ kzvA ∼ k⊥vλ
⇒ Alfvén timescale and cascading time scale match
For the critical balance and scale-independent cascade we find

kz ∼ k2/3
⊥ L−1/3

v⊥ ∼ vA(k⊥L)−1/3

⇒ E(k⊥, kz) ∼
v2

A

k10/3
⊥ L1/3

f

(
kzL1/3

k2/3
⊥

)
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Goldreich-Sridhar
Strong Turbulence

Consequences

A cutoff scale
exists
Eddies are
elongated

Figure: From Cho, Lazarian, Vishniac (2003)

Felix Spanier (Uni Würzburg) Simulation methods in astrophysics 12 / 20



Turbulence Conclusion

There is a number of turbulence models out there
It is not yet clear which is correct
All analytical turbulence models are incompressible
The only thing we know for sure is that there is power law in the
spectral energy distribution
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Numerical methods

Methods for the Navier-Stokes-equation

Projection solve compressible equations, project on incompressible part
Vorticity use vector potential to always fulfill divergence-free condition
Spectral use Fourier space to do the same as above

Methods are presented for the Navier-Stokes-equation but also apply to
MHD
Spectral methods will be presented for Elsässer variables in detail
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Projection method

Different possible schemes
Here a scheme proposed by [1].

Step 1: Intermediate Solution

We are looking for a solution u∗, which is not yet divergence free

u∗ − un

∆t
= − ((u∇)u)n+1/2 −∇pn−1/2 + ν∆un (21)

This requires some standard scheme to solve the Navier-Stokes-equation
(cf. Pekka’s talk)
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Projection method

Step 2: Dissipation

Use Crank-Nicholson for stability in the dissipation step

ν∆un → 1
2
ν∆ (un + u∗) (21)

yields

u∗∗ = un −∆t ((u∇)u +∇p) (22)(
1− ν∆t

2
∆

)
u∗ =

(
1 +

ν∆t
2

∆

)
u∗∗ (23)
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Projection method

Step 3: Projection step

To project u∗ on the divergence-free part, an auxiliary field φ is calculated,
which fulfills

∇· (u∗ −∆t∇φ) = 0 (21)

∆φ =
∇·u∗

∆t
(22)

un+1 = u∗ −∆t∇φn+1 (23)

Here a Poisson equation has to be solved. This is the tricky part and is the
most time consuming.
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Projection method

Step 4: Pressure gradient

Finally the pressure is updated. This can be calculated using the
divergence of the Navier-Stokes-equation

pn+1/2 = pn−1/2 + φn+1 − ν∆t
2

∆φn+1 (21)
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Projection method

Total scheme

u∗ − un

∆t
+∇pn+1/2 = −[(u · ∇)u]n+1/2 +

ν

2
∇2(un + u∗) (21)

∆t∇2φn+1 = ∇ · u∗ (22)
un+1 = u∗ −∆t∇φn+1 (23)

∇pn+1/2 = ∇pn−1/2 +∇φn+1 − ν∆t
2
∇∇2φn+1 (24)
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Vorticity-Streamline

The natural formulation for divergence-free flows is the stream function
u = ∇×Ψ

Step 1: Calculate velocity

un = ∇×Ψn (25)
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Vorticity-Streamline

Step 2: Solve the Navier-Stokes-equation

∂tu = − (u∇) u + ν∆u (25)
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Vorticity-Streamline

Step 3: Calculate Vorticity

∂tω = ∇×(∂tu) (25)
ωn+1 = ωn + dt ·∆ω (26)
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Vorticity-Streamline

Step 4: Calculate Streamfunction

Solve Poisson equation
∆Ψn+1 = −ωn+1 (25)

Problem: This would result in a mesh-drift instability. Use staggered grid!
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Vorticity-Streamline

Complete scheme

u = ∇×Ψ (25)

(ux )i,j+1/2 =
Ψi,j+1 −Ψi , j

dy
(26)

(uy )i+1/2,j =
Ψi+1,j −Ψi , j

dx
(27)

ui+1/2,j+1/2 =

(
1/2

(
(ux )i+1,j+1/2 + (ux )i,j+1/2

)
1/2

(
(uy )i+1/2,j+1 + (uy )i+1/2,j

) ) (28)
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Spectral methods

Basic idea: Use Fourier transform to transform PDE into ODE
Problem: This is complicated for the nonlinear terms.

Spectral Navier-Stokes-equation

∂ũα
∂t

= −ikγ

(
δαβ −

kαkβ
k2

)(
ũβuγ

)
− νk2ũα (29)

kαũα = 0

Quantities with a tilde are fouriertransformed.
What’s so special about the red and green term?
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Spectral methods

The green term
Start with the Navier-Stokes-equation

∂u
∂t

+ (u∇)u +∇p = 0 (29)

we can identify
ikγδαβ ũβuγ = (u∇)u (30)

and taking the divergence of the Navier-Stokes-equation

∆p = ∇ · (u∇)u (31)

so the second term is the gradient of the pressure

ikγ

(
kαkβ
k2

)(
ũβuγ

)
= −∇p (32)
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Spectral methods

Step 1: Fouriertransform

Starting with ũα the velocity has to be transformed into uα
Then uαuβ can be calculated (only 6 tensor elements are needed)
This is transformed back to Fourier space ũαuβ
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Spectral methods

Step 2: Anti-Aliasing

In the high wavenumber regime of uα we will find flawed data.
Due to the fact, that not all data is correctly attributed for by the Fourier
transform, aliased data has to be removed
For |k | > 1/2kmax set ũαuβ(k) = 0
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Spectral methods

Step 3: Update velocity

ũ∗α = ũn
α −∆t(ikγ

(
δαβ −

kαkβ
k2

)(
ũβuγ

)
− νk2ũα) (29)
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Spectral methods

Step 4: Projection

Project u∗α on its divergence free part

un+1 = u∗ − k(k · u∗)
k2 (29)
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Spectral methods

Why to use Spectral Methods?

Pro
Easy to implement
Relies on fast FFT-algorithms
Easy to parallelize

Contra
high aliasing-loss
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Fourier Transforms

Fourier transforms are available in large numbers on the market
FFTW 2 ubiquitious library, allows parallel usage
FFTW 3 the improved version, no parallel support

Intel MKL includes DFT, much faster than FFTW, simple parallelized
version, limited to Intel-like systems

P3DFFT UC San Diego’s Fortran based FFT, highly parallelizable,
requires FFTW-3

Sandia FFT Sandia Lab’s C based FFT, highly parallelizable, requires
FFTW-2
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Parallel Computing

Usually a parallel fluid simulation requires exchange of field borders
between processors.
Spectral methods are slightly different:

The calculation of uαuβ and the update step are completely local. They
have no derivatives and do not need neighboring points
Every non-local interaction is done in the FFT

So the only thing we have to do, is using local coordinates and a parallel
FFT
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Extension to MHD

Elsässer notation

(∂t − vAkz) w−α =
i
2

kαkβkγ
k2

(
w+
β w−γ + w−β w+

γ

)
− ikβw−α w+

β −
ν

2
k2nw−α

(∂t + vAkz) w+
α =

i
2

kαkβkγ
k2

(
w+
β w−γ + w−β w+

γ

)
− ikβw+

α w−β −
ν

2
k2nw+

α

The equations are treated similarly to the Navier-Stokes-equation .
Two major changes:

Two coupled equations
Magnetic field introduced via −vAkz term
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