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6. Propagate the particle velocities v;H'l from
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The electron flow u”} is not time-centred. but that cannot
be avoided.

The particle mover is split into a position mover and a ve-
locity mover. The positions and velocities are propagated by
following a time-reversible second-order accurate Buneman
scheme as follows (Hockney and Eastwood. 1988, p. 112).
The position mover is,
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The velocity update formula
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where a = (g;/m;)At and B 2+1/2 1ust be evaluated at the
particle position x?'H’ °.
By defining the vector @ = (1/2) a B""'/2, the update

operation can be written in a slightly more compact way as

&

L‘f.q_l = Uﬂ -+

i ! 1+ w?

[{uf —uy) + (v —uj) xw}xw (19) 1




COMPUTER
SIMULATION
USING
PARTICLES

Taylor & Francis
Fad |_:I b Framcis Caoup




4-7 EXAMPLES OF INTEGRATION SCHEMES

4-7-1 Lorentz Force Integrators

In the presence of a magnetic ficld B the force on a particle of charge g with
velocity v is given by the Lorentz force:

Positions and velocities are obtained by integrating
dx dv
== — = 4-90
dt Y dr vxil ¢ )

where £ = gB/m s the cyclotron (or gyro) frequency.

Consider first the case where = Q2, where Q = constant. Equation (4-90)
describes circular orbits of radius |vl in the v,-v, plane and of radius [v|/ in the x-y
plane, where in both instances the angular frequency is given by Q. A consistent
time-centered finite-difference approximation to Eq. (4-90) is
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This scheme was recommended by Buneman (1967) and used by Hockney (1966a)
in the study of anomalous plasma diffusion (seée Chapter 9). The equations,
although implicit in velocities, can be readily solved for new values in terms of old
by suitably rearranging Eq. (4-92) (cf. below). They are time-reversible and second-
order accurate. The energy constants (= |v|?) are identical for both the differential
and difference equations. In addition, Eqs. (4-91) and (4-92) are unconditionally
stable: this may be readily established by using the amplification matrix method,
yielding the four roots of the characteristic equation
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The first pair of roots (at A = 1) correspond to Eq. (4-91), while the second pair of
roots, which traverse the unit circle as conjugate pairs moving from 1 = +1 to
A = —1 as DT increases from zero to infinity, correspond to Eq. (4-92).

The discrete approximation, Eq. (4-92), gives velocities lying on a circle of
radius |v| in the v, — v, and positions lying on a circle of radius R’ in the x-y plane.
The effect of finite timestep is to cause the frequency to be higher than the correct
frequency Q (cf. Sec. 4-6) and the radius R’ to differ from the cyclotron radius
R = |v|/Q. The frequency w of the orbits described by Eq. (4-92) may be found by
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setting 45 or A, to exp (iwDT) in Eq. (4-93), yielding

tan ”’—I;T = j;—m;T (4-94)

The radius R’ may be found from Eqs. (4-91) and (4-92) using Eq. (4-94) and the
result that |v]| = constant:

v wDT

As in the case of the leapfrog harmonic oscillator, the error in the frequency can be
eliminated by adjusting the frequency appearing in the difference equations (see
Hockney, 1966a, pp. 93-98). In this case, Eq. (4-94) tells us that we must replace
QDT/2 in Eq. (4-92) by tan (QDT/2).

The results for Q = constant immediately generalize to a variable Q by
replacing £ by ©" = Q(x") in Eq. (4-92). In addition, if there is an electric field
present, then the leapfrog approximation for the electric ficld force can be

combined with the Lorentz force integrator to give the scheme
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The components of Eqs. (4-96) and (4-97) parallel to the magnetic field are simply
the leapfrog scheme, and so must satisfy the leapfrog stability criterion. The
components perpendicular to the magnetic field are unconditionally stable and

have the interesting property that for large timestep they tend towards the
adiabatic drift equation:
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This property was used by Levy and Hockney (1968) in the study of crossed-field

electron beams, and has been extensively exploited by Birdsall and his coworkers
(Birdsall and Langdon, 1981).

The electric acceleration terms and the rotational (Lorentz force) terms in Eq.
(4-97) can be separated by introducing two intermediate velocities v§ and v3:
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Equation (4-100) may further be factorized by taking its cross product with QDT/2
and eliminating the triple cross-product term involving v% to yield
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where vi=v]+¥vl X Q (4-103)

The factorization equations [Eqs. (4-99), (4-103), (4-102), and (4-101)] form the
basis of Boris’ CYLRAD algorithm_(Boris, 1970).

The frequency correction factor introduced for the constant £) case can also be
incorporated into the more general form [Eq. (4-97)]. If we assume that E and Q
are approximately constant over a timestep, then the equation of motion
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