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Abstract. The aim of the paper is to study how auroral
potential structures close at high altitude. We analyse all
electric field data collected by Polar on auroral field lines in
1996–2001 by integrating the electric field along the space-
craft orbit to obtain the plasma potential, from which we
identify potential minima by an automatic method. From
these we estimate the associated effective mapped-down
electric fieldEi , defined as the depth of the potential mini-
mum divided by its half-width in the ionosphere. Notice that
although we use the ionosphere as a reference altitude, the
field Ei does not actually exist in the ionosphere but is just
a convenient computational quantity. We obtain the statisti-
cal distribution ofEi as a function of altitude, magnetic local
time (MLT), Kp index and the footpoint solar illumination
condition. Surprisingly, we find two classes of electric field
structures. The first class consists of the low-altitude poten-
tial structures that are presumably associated with inverted-
V regions and discrete auroral arcs and their set of associ-
ated phenomena. We show that the first class exists only
below ∼3RE radial distance, and it occurs in all nightside
MLT sectors (RE=Earth radius). The second class exists
only above radial distanceR=4RE and almost only in the
midnight MLT sector, with a preference for highKp values.
Interestingly, in the middle altitudes (R=3−4RE) the num-
ber of potential minima is small, suggesting that the low and
high altitude classes are not simple field-aligned extensions
of each other. This is also underlined by the fact that statisti-
cally the high altitude structures seem to be substorm-related,
while the low altitude structures seem to correspond to sta-
ble auroral arcs. The new finding of the existence of the two
classes is important for theories of auroral acceleration, since
it supports a closed potential structure model for stable arcs,
while during substorms, different superposed processes take
place that are associated with the disconnected high-altitude
electric field structures.
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1 Introduction

Strong, up to several hundred millivolts per meter, perpendic-
ular electric fields exist at around 5000–13 000 km altitude in
conjunction with optical auroral arcs and inverted-V electron
precipitation (Mozer et al., 1977). Closer examination of the
perpendicular electric fields reveals that they often form a
convergent electric field signature (electric fields pointing to-
ward each other in close spatial separation). That the pairs
of convergent electric fields are typically not caused by tem-
poral variations can be inferred from the fact that upgoing
ion beam energies match with the potentialV integrated
from the boundary of the structure along the satellite orbit,
V =−

∫
ds×E (McFadden et al., 1998). The potentialsV ob-

tained in this way also agree with typical inverted-V elec-
tron energies measured at lower altitudes. Thus, it seems that
there exists a negative potential structure for each inverted-V
event. From the fact that the occurrence frequency of strong
convergent electric fields goes down with decreasing altitude,
it was concluded that the potential contours must close above
the ionosphere, thus forming an upward parallel electric field
(Torbert and Mozer, 1978; Mozer et al., 1980; Bennett et al.,
1983). This also supports the view that the U-shaped po-
tential model is responsible for generating inverted-V type
electron energy spectra (Carlqvist and Boström, 1970).

The widths of the potential structures should match the
typical widths of inverted-V regions and optical auroral arcs.
The widths of inverted-V regions and optical arcs match each
other when compared with compatible criteria (Stenbaek-
Nielsen et al., 1998; Hallinan et al., 2001). In this paper
we consider widths in the range 500 m–60 km. This width
range should contain almost all auroral arcs, apart from the
most narrow ones (Maggs and Davis, 1968; Borovsky, 1993;
Knudsen et al., 2001). Knudsen et al. (2001) used the term
“mesoscale arc” to refer to what we call “auroral arc” in this
paper.

Since there is a lot of support for the U-shaped po-
tential model from low-altitude observations (altitude be-
low 13 000 km), a natural question arises in what way the
U-shaped potential contours continue at higher altitudes. It
is topologically necessary that all potential contours close
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somewhere within the flux tube, either below the equatorial
plane or in the opposite hemisphere. In this paper, by “low-
altitude” we refer to radial distances below 3RE which corre-
sponds to altitude 13 000 km. Surprisingly, no clear evidence
of significant convergent electric field signatures was found
above about 20 000 km altitude in a statistical study using
78 events for which simultaneous ground magnetometer data
were available to rule out substorm cases (Janhunen et al.,
1999). Stable arcs are so common phenomena that among
78 events there should be some, thus the indirect implication
was that above stable arcs, no clear evidence of significant
convergent fields was found.

In this paper we revisit the potential structure closure ques-
tion in a more thorough and quantitative way by using a much
larger data set and complete altitude coverage. Our expanded
study is now made possible by the fact that the orbit of Polar
has evolved in such a way that no altitude gaps remain within
5000–30 000 km. We study potential structures of various
depths as a function of altitude, without, however, forgetting
magnetic local time (MLT), solar illumination andKp in-
dex dependence. In particular, we investigate the so-called
effective electric fieldEi , defined as the depth of the poten-
tial minimum divided by the width of the structure in the
ionosphere. Notice that although we use the ionosphere as
a reference altitude, the fieldEi does not actually exist in
the ionosphere but is just a convenient computational quan-
tity. The statistical results can reveal important facts that can
be used to constrain various theories that have been put for-
ward to self-consistently explain the yet unsolved electron
acceleration mechanism whose manifestations are potential
structures, inverted-V regions, ion beams, and auroral arcs
(Carlqvist and Bostr̈om, 1970; Bryant and Perry, 1995; Jan-
hunen and Olsson, 2000). To complement the study of po-
tential minimum associated electric fields, in Sect. 5 we will
also present results concerning the altitude distribution of all
perpendicular electric fields (i.e. not only those that are asso-
ciated with potential minima). That substudy is slightly sim-
ilar to a statistical study by Lindqvist and Marklund (1990),
who used Viking data up to 14 000 km altitude (3.2RE radial
distance).

We use the following terminology. “Altitude (h)” means
distance from Earth’s surface and “radial distance (R)”
means distance from the centre of the Earth (geocen-
tric distance). They are connected byR=RE+h, where
RE=6 371.2 km is Earth’s radius. We usually express alti-
tude in kilometres and radial distance inRE . In the figures,
radial distanceR is used.

2 Instrumentation

The Polar Electric Field Investigation (EFI) instrument mea-
sures the instantaneous electric field in the satellite spin plane
continuously with at least 20 samples per second (Harvey
et al., 1995). The measurement is made with two pairs of
long wire booms, called 1–2 and 3–4. Also, the component
which is parallel to the spin axis is measured with a fixed

boom pair (called 5–6), which does not, however, always
produce an accurate measurement because of the shortness of
the booms. Fortunately, since the spin and orbital planes of
the satellite are very nearly equal, the 5–6 component hardly
contributes anything to the line integralV of the electric field,
V =−

∫
ds×E. Thus, we assumed that the 5–6 component is

zero instead of using the measured value in our basic sta-
tistical studies. To verify that the results do not depend on
this assumption we repeated part of the analysis by using the
measured 5–6 component and also, as a third option, the elec-
tric field computed from 1–2, 3–4 and the conditionE×B=0.
We found that the potential minima computed by the three
different methods gave very nearly the same result.

During intense cold ion outflow events, a wake effect par-
allel to the magnetic field may develop which may cause an
offset of∼5 mV/m in the parallel component if the magnetic
field is close to the spin plane, as it is in many of our events.
A manual inspection of some of our events showed, however,
that this effect does not play a role in our data set. One rea-
son is that we only use the component of the electric field
which is parallel to the spacecraft velocity vector, which is
usually approximately perpendicular in the auroral crossings.
We also use the Magnetic Field Experiment (MFE) on board
Polar (Russell et al., 1995) to reject events where the satellite
moves too much parallel to the magnetic field.

3 Data processing

3.1 Data selection

Only the invariant latitude (ILAT) range 64
◦

–75
◦

is included
in the analysis. As ILAT values we use the dipolar ILAT pa-
rameter values found in standard Polar orbital CDF files. Fur-
thermore, radial distances only up toR= 6RE are considered
because at higher radial distances the satellite travel times
over the auroral zone become inconveniently long. Only
complete auroral crossings are included, i.e. ones in which
the ILAT of Polar changes monotonically between 64

◦

and
75

◦

. Likewise, if any part of the auroral crossing as de-
termined from ILAT has the radial distance beyond 6RE ,
the crossing is not included in the database. Eclipse periods
where the satellite is in the optical shadow of the Earth are re-
moved because the DC electric field double probe measure-
ments may not be reliable. Also, periods when the Plasma
Source Instrument (PSI) (Moore et al., 1995) is operating are
removed.

3.2 How potential minima are found and processed

The data processing starts from the plasma potential as a
function of time, i.e. the potentialV (t) integrated along the
spacecraft orbit using the spin plane electric field, and has
the following steps:

1. The potentialV is interpolated to 0.005
◦

ILAT grid
spacing, which corresponds to about 500 m resolution in
the ionosphere. The temporal resolution of 20 samples
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per second would enable even somewhat higher ILAT
resolution, but the chosen resolution was considered
sufficient for this study. Based on Knudsen et al. (2001),
a mean width of an auroral arc is 18±9 km so that 500 m
resolution is high enough.

2. All local minima are found from the ILAT-interpolated
potential, i.e. all data points that have a smaller value
than their immediate predecessor and successor.

3. A search is initiated left and right from each local mini-
mum, stopping when the values start to decrease again.
This produces a tentative interval for the minimum re-
gion.

4. The depth of the minimum is defined to be the differ-
ence of values at the minimum and at the point (ei-
ther left or right, whichever yields the smaller depth)
where points started to decrease again. This means that
some potential minima are possibly underestimated, es-
pecially when a minimum occurs at an edge of a larger
minimum.

5. A region around the minimum is found which satisfies
the conditionV ≤Vmin+0.5VdepthwhereVmin is the po-
tential value at the local minimum andVdepth, is the min-
imum depth defined in the previous item. The width of
the minimum is then defined to be the ILAT extent of the
region. This corresponds to width at the half maximum.

6. Interpolation of the data to a new ILAT grid having half
the previous resolution is carried out, and the above
steps are repeated. This is done in order to prevent
left/right searches from getting stuck with local fluctua-
tions, i.e. the data vector is analysed in multiple spatial
scales in order to find the minima at any scale. This is
repeated recursively to higher coarsening levels until the
ILAT spacing is large (>0.5

◦

). This is the most impor-
tant point of our analysis. The procedure is illustrated
in Fig. 1. The first six panels show the original data
(top panel), together with five subsequent smoothed ver-
sions. The potential becomes smoother in each panel as
compared to the panel above. The minima found at each
stage are shown as dots. The widths and depths of the
minima are indicated by horizontal and vertical lines,
respectively. The figure also contains two other panels
which are discussed below after item 8.

7. The parameters (location, width, etc.) of all minima are
stored in a file.

8. As a postprocessing step, minima that are too close to
each other are replaced by one (the one with the largest
depth is selected among equivalent ones). Two min-
ima (belonging to the same auroral pass) are considered
equivalent, if and only if all the following conditions
hold:
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Fig. 1. Illustration of the potential minimum finding algorithm.
Panels 1–6 show the first six coarsening levels. Dots show each
located local minimum and its width and depth by horizontal and
vertical lines, respectively. Panel 7 shows all potential minima after
postprocessing (equivalents removed and replaced by the deepest
minimum). Panel 8 is same as panel 7, except showing only poten-
tial minima deeper than 2 kV. In the actual analysis the limit is set
to 0.5 kV.

(a) The minima come from different coarsening levels;

(b) Their ILAT positions are closer to each other than
(1/3) min(W1, W2), whereW1 andW2 are the ILAT
widths of the two minima, respectively;

(c) The widths do not differ too much, for example,
1/W0<W1/W2<W0 must hold whereW0= 1.5.

Panel 7 of Fig. 1 repeats the original, unsmoothed poten-
tial with the minima found at all smoothing levels, but with
“equivalent” minima removed by the algorithm described
above in item 8. Finally, panel 8 shows which of the minima
shown in panel 7 remain when only minima deeper than 2 kV
are retained. By visual judgement, the minima in panel 8
correspond rather nicely to the real potential minima of the
original data vector.

Thus, each auroral crossing may, and in general will, yield
multiple potential minima. Furthermore, if a minimum is
found at one coarsening level, it is typically found at some
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Fig. 2. The ILAT speed of the Polar satellite footpoint in the iono-
sphere, transformed to km/s (solid).

of the higher coarsening levels as well. Usually only one of
the multiple found minima survives the postprocessing step,
which is what one wants. Naturally, the act of deciding which
minima are close enough to be considered equivalent is a sub-
jective one. We think, however, that applying some sort of
multiple minima removal method is much better than apply-
ing none at all, for example, because in the latter case narrow
minima would be found at many coarsening levels and thus
be statistically overrepresented. We have also checked that
changing the criteria within a reasonable range does not ap-
preciably affect the statistical results.

3.3 Postprocessing steps

Before plotting and generating the statistical results pre-
sented below, some further simple filtering conditions are ap-
plied, which are listed here:

1. The angle between the ionosphere-projected satellite
trajectory with constant ILAT circles must be between
60

◦

and 120
◦

. This is done to remove passes where the
satellite moves nearly tangential to the auroral oval be-
cause in such geometries, the satellite ILAT speed is
low and the geometry is unfavourable for analysing the
trajectory-integrated potential.

2. The angle betweenB and the satellite velocity vector
must be at least 30

◦

, because if the satellite moves al-
most parallel to the field line, the ILAT speed is again
low and temporal variations easily interfere with the
analysis.

3. Only events with a depth larger than 0.5 kV are shown,
unless otherwise noted. The number of potential min-
ima grows rapidly if one reduces the lower depth thresh-
old.

In order to display statistical results, the orbital coverage is
needed as a function of altitude, MLT,Kp, and season. Since
we are expecting to measure static structures that the orbit in-
tersects, it makes more sense to define the orbital coverage as
the number of oval crossings rather than as the time spent. As
the altitude in general varies somewhat as the satellite moves
between 64

◦

and 75
◦

ILAT, one has to decide which altitude
is defined as the altitude of the oval crossing. Notice that
we cannot use the altitude at which the potential minimum is
truly observed because there are usually several (or none at
all) potential minima per oval crossing and the orbital cover-
age must be computed in a way which is independent of the
occurrence of the minima. We choose to define the altitude
of the oval crossing to be the altitude where the satellite was
when it crossed the nominalQ=2 oval in Table 1 of Holz-
worth and Meng (1975).

3.4 Structure lifetime and motion effects

The ILAT speed of Polar is highly dependent on altitude and
is about 0.002

◦

per s atR=5RE (Fig. 2). With this speed, it
takes about 50 s to pass through a potential minimum of 0.1

◦

width. This time is shorter than typical lifetimes of auroral
arcs, so the satellite does not miss such structures because of
structure lifetime effects. Some of the widest minima con-
sidered in this study (0.6

◦

) could be possibly affected at high
altitudes, since it takes about 5 min to traverse through them,
but we think that this cannot distort the statistics in a signifi-
cant way.

The possibility that arc motion could affect the result is
now considered. There are three possible cases: 1) The po-
tential structure is moving towards the satellite. In this case
the width and depth of the potential structure are underesti-
mated, but their ratio (the effective electric field) is not af-
fected. However, if the depth is underestimated so much
that it drops below our selected threshold (0.5 kV), the struc-
ture drops out of the database and in this way the effective
electric field statistics are also affected. 2) The potential
structure moves in the same direction as the satellite with
an speed which is lower than the satellite speed. In this case
the width and depth of the potential structure are overesti-
mated, but again, the effective electric field is not affected.
However, weak potential structures, that in reality are below
the threshold, can be raised above the threshold and thus also
affect the effective electric field statistics. 3) The potential
structure moves in the same direction as the satellite with a
speed which is larger than the satellite speed. In this case the
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Fig. 3. Simulated effect of structure motion to effective mapped-down electric field occurrence frequency as a function of radial distance,
taking into account realistic Polar satellite speed at different altitudes. Panels(a)–(d)correspond to 0%, 25%, 50% and 75%, respectively, of
the true potential structures being positive (black aurora structures). In the left plot the average structure speed in the ionosphere is 100 m/s
and in the right plot it is 200 m/s.

polarity of the potential structure will come out reversed: a
negative structure appears as a positive one and vice versa.
Whether this causes a net underestimation or overestimation
of the occurrence frequency of effective electric fields de-
pends on the relative occurrence frequencies of negative and
positive structures, which is unknown.

In summary, for structures that move slower than the
satellite, the effects that occur for structures moving opposite
or parallel to the satellite, at least qualitatively, tend to cancel
each other out. Overall, some underestimation of the poten-
tial structure occurrence frequency takes place if the struc-
tures are fast-moving; exactly how much depends on how
many positive potential structures there are. Concerning the
effective electric field distribution of detected potential struc-
tures, their distribution is essentially independent of the ve-
locity of the structures.

To evaluate structure motion effects more quantitatively,
we perform the following simple Monte Carlo simulation.
As random variables we use (i) the potential structure depth
V , which is exponentially distributed, (ii) the potential struc-
ture ionospheric width, which obeys a uniform distribu-
tion between 0 and 60 km, and (iii) the ionospheric veloc-

ity of the structurev, which is exponentially distributed with
v0=100 m/s or 200 m/s expectation value and a random sign.
The potential depthV is modified by the factor|vs |/|v − vs |,
wherevs is the satellite speed (a realistic speed specific to
each altitude is employed, Fig. 2) and multiplied by−1, if v

andvs have the same sign and|v|>|vs |.

The results of the simulation are shown in Fig. 3. In the left
plot the mean ionospheric speed of the structure is 100 m/s
and in the right plot it is 200 m/s. To our knowledge, no large
statistical studies of auroral arc speeds exist, but in event
studies the speeds are mostly below 200 m/s, although speeds
up to 400–500 m/s can also occur (Haerendel et al., 1993;
Williams et al., 1998; Trondsen and Cogger, 2001); thus, the
values 100 and 200 m/s shown in the plot pair of Fig. 3 should
be representative. Notice that since the speeds are exponen-
tially distributed, there are also much higher speeds than 200
m/s present in the simulated ensemble of potential structures.
The quantity plotted in each panel of Fig. 3 is the number of
negative potential structures reported by the simulated satel-
lite at each altitude, divided by the true number of them. In
panels (a) all the potential structures in the ensemble are as-
sumed negative. At low altitude the satellite correctly detects
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Fig. 4. All potential minima larger than 2 kV and with width<0.6
◦

(60 km in the ionosphere) as a function of MLT and radial distanceR.
Different energies (minimum depths) are shown by different symbols: 2–4 kV plus sign, 4–6 diamond, 6–8 small black disk, more than 8
large black disk.

all of them (the occurrence frequency is 1), but at high alti-
tude it fails to detect those structures that move in the same
direction as the satellite with a higher, speed because it mis-
interprets them as positive structures. The effect is most pro-
nounced in the right plot because there the structure speed
is two times higher, on the average. In panels (b–d), some
fraction of the structures in the ensemble are assumed to be
positive (25%, 50% and 75%, respectively). We believe that
values around 50% (panel (c)) are the most likely. Those pos-
itive structures that move in the same direction as the satellite
with a higher speed are now misinterpreted as negative ones
and thus, they increase their reported number, partly or com-
pletely balancing the effect. If the number of positive and
negative structures is the same (panel (c)), the net influence

of the structure speed to the number of detected structures
is almost nonexistent. The conclusion that we draw from
Fig. 3 is that the structure motion effect on the occurrence
frequency of effective electric fields is likely to be negligi-
ble below 4RE radial distance and about 10–20% at 6RE .
In the worst case (v0=200 m/s, no positive structures at all),
the effect would be about 40% at 6RE and negligible below
3.5RE .

3.5 Effect of mapping

As mentioned above, we use the dipole ILAT throughout the
paper. The employed ILAT definition has some effect to the
structure width in the ionosphere, because the mapping de-
pends on the underlying magnetic field model. To evaluate
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Fig. 5. Distribution of the minima against ILAT andR for the nightside (18:00–06:00 MLT) events. For details of the symbols, see caption
of Fig. 4.

the effect quantitatively, we check how much the structure
widths would differ if the Tsyganenko–89 magnetic field
model, together with IGRF internal field model, are used in-
stead of a dipole model. The result is that in 50% of the cases,
the difference is less than 11%, and in 90% of the cases it
is less than 33%. Almost the same numbers are obtained re-
gardless of whichKp value (1–6) one uses in the Tsyganenko
model; thus, we conclude that the magnetic field model used
to define the ILAT does not have a significant effect on our
results.

Another effect of mapping is that ILAT values below 66
map belowR=6RE in the equatorial plane. In other words,
in the highest radial distance bin (5.5RE<R<6RE), the
lowest ILAT values are not covered by the satellite. In
principle, this may distort the statistics in the highest radial

distance bin to some extent, although the effect should be
rather minor since usually ILAT below 66 represents subau-
roral latitudes where potential structures do not exist. The
conclusions of the paper are not affected since they do not
depend on the data in the highest radial distance bin.

4 Results for potential minima and their associated
electric fields

As an overview, Fig. 4 shows all potential minima deeper
than 2 kV as a function of MLT and radial distanceR. Dif-
ferent symbols indicate the depth of the minima (see fig-
ure caption for details). Most potential minima are found at
18:00–04:00 MLT and the highest energy potential minima
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are found at low altitudes, below 3RE . Similarly, Fig. 5 dis-
plays the minima as a function of ILAT andR for the night-
side (18:00–06:00 MLT). The potential minima tend to occur
uniformly over the 65–74 ILAT range, partially because no
MLT separation was done here (both the intrinsic variability
and the dependence of the mean auroral oval on MLT con-
tribute to the spreading of the distribution). Notice that in
Figs. 4 and 5, the time spent by the satellite in different re-
gions is not taken into account. In the subsequent plots the
orbital coverage will be taken into account.

4.1 Altitude

Our baseline plot is Fig. 6 that shows results for all data col-
lected in the nightside including allKp values. Panel (a) is
the number of orbital crossings in each 0.5RE radial bin.
Panel (b) shows the depth in kilovolts of all found poten-
tial minima which are deeper than 500 V and at most 0.6

◦

wide in ILAT (corresponding to 60 km in the ionosphere).
Panel (c) shows the effective mapped-down ionospheric elec-
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Fig. 7. Same as Fig. 6 but only potential minima deeper than 3 kV
are included.

tric field Ei in V/m, associated with all those potential min-
ima plotted in the previous panel that also satisfy the con-
dition Ei>100 mV/m. The effective mapped-down iono-
spheric electric field is defined as the depth of the poten-
tial minimum divided by the mapped-down half-width of the
structure in the ionospheric plane. Notice that the effective
electric fieldEi does not really exist in the ionosphere, but
we use the ionosphere just as a convenient reference altitude
in order to easily compare electric fields measured at differ-
ent altitudes. This variable is supposed to be invariant with
radial distance above the acceleration region, if the accelera-
tion structure is not local but is mapped along magnetic field
lines towards the magnetosphere. Panel (d) is the occurrence
frequency ofEi>100 mV/m per orbital crossing, which is
obtained by dividing the number of data points in panel (c) in
each radial bin by the corresponding orbital crossing number
from panel (a) (so “1” means that there is one event every
orbit, on the average). The error bars correspond to 1/

√
n

relative errors, wheren is the number of datapoints exceed-
ing the threshold. Panel (e) is the occurrence frequency of
Ei>500 mV/m. Panels (d) and (e) should, in principle, be
divided by one of the profiles of simulatedEi occurrence
frequency displayed in Fig. 3. Applying such a correction
would change the results only mildly in the highest radial
distance bins, however.
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Fig. 8. Same as Fig. 6, but only when the ionosphere at satellite footpoint is sunlit (left plot) and in darkness (right plot).

We see from Fig. 6 (panels (d) and (e)) that the large ef-
fective electric fields associated with potential minima oc-
cur more frequently at low altitudes than at higher altitudes.
The effect is quite pronounced in panel (e), i.e. when the
threshold is 500 mV/m. A similar trend can also be seen
in the scatter plot of the potential minima (panel (b)). We
will see below (Sect. 4.3) that the increase in the occurrence
frequency above 4RE is mainly due to phenomena in the
midnight MLT sector. Interestingly, an occurrence minimum
appears at 3–4RE radial distance. Even though the figure
contains all nightside MLT andKp values, this tends to sug-
gest that a simple mapping of the potential upward does not
happen in the auroral zone.

In Fig. 7 we show the statistics of only those potential min-
ima that are deeper than 3 kV. The trends seen in the baseline
plot (Fig. 6) appear in Fig. 7 in a more dramatic form. Now
we can distinguish two separate populations of potential min-
ima, and no events occur at 3–4RE radial distance in the bot-
tom panel, with only a few events in the 2nd panel from the
bottom (see also the scatter plots).

4.2 Solar illumination dependence

In Fig. 8 we show the statistics separately for events when
the ionosphere at the satellite footpoint is sunlit or in dark-

ness. During sunlit conditions (left panels), the maximum of
the occurrence frequency of high potential minimum associ-
atedEi fields (panel (d)) is shifted to a higher radial distance
(R=2.75RE , corresponding to 11 000 km altitude from
Earth’s surface) than during darkness (R=1.75−2.25RE ,
the corresponding altitude is 5000–8000 km). Notice that we
use numbers like 2.75 to uniquely label our bins, not to imply
that the precision in altitude is two decimal digits. Further-
more, in both sunlit and darkness cases separately, the max-
imum occurrence frequency moves towards lower altitudes
when the threshold is increased from 100 mV/m (panel (d))
to 500 mV/m (panel (e)). This means that strongEi field
events tend to occur at lower altitudes. The overall occur-
rence frequency is quite similar between sunlit and darkness
for >100 mV/m events, but the low-altitude strong events
(panel (e)) are clearly more common in shadow conditions;
this may suggest that they tend to occur near local midnight,
where the ionospheric footpoint is almost always in darkness.
These results are in accordance with recent hybrid simula-

tions of auroral potential structures (Janhunen and Olsson,
2002, Table 2). Both Fig. 8 and the simulations are consis-
tent with the idea that sunlight increases the plasma density
at low altitudes due to increased ionospheric photoionisation,
which makes the bottom of the acceleration region move up-
ward. This idea was first suggested by Bennett et al. (1983)
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Fig. 9. Same as Fig. 6, but separated in dusk (18:00–22:00), midnight (22:00–02:00) and dawn (02:00–06:00) magnetic local time (MLT)
bins, as well as sunlit (top row) and darkness (bottom row) conditions. As in Fig. 6, allKp values are included, width is restricted to be
smaller than 0.6

◦

and depth more than 0.5 kV.

based on S3–3 data. Figure 8 suggests that not only the ac-
celeration region bottom altitude moves up, but also potential
minima of given depth are rarer during sunlit conditions. In
a particular model calculation of the hybrid simulation it was
found that halving the ionospheric plasma density changed
the potential depth from 3 kV to 3.7 kV, and the bottom alti-
tude moved down from 5500 km to 2600 km (Janhunen and
Olsson (2002), Table 2). Observationally it has also been
found using satellite particle data that sunlight suppresses au-
roral acceleration events (Newell et al., 1996).

4.3 MLT

From Fig. 4 it was seen that the potential minima are mainly
found in the evening and midnight sectors. To study the
MLT distribution in more detail, Fig. 9 shows the statistics
separated in three nightside MLT bins (18:00–22:00, 22:00–
02:00, 02:00–06:00) and separated according to the footpoint
illumination conditions.

For the lowest two or three altitude bins we have a reason-
able orbital coverage in all six subplots (see the top panels
in all subplots) and the behaviour can be summarised as fol-
lows. In sunlit conditions, the occurrence frequency is about
two times higher in the evening and midnight sectors than
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Fig. 10. Same as Fig. 6, but decomposed into smallKp (Kp≤2, left plot) and largeKp (Kp>2, right plot).

in the morning sector. In darkness conditions the highest
occurrence frequency is found in the midnight sector, the
occurrence frequencies are lower by a factor of 2–3 in the
evening sector and the lowest frequencies appear again in the
morning sector. These findings are in agreement with ear-
lier studies concerning the occurrence of inverted-V events
at low altitude (Lin and Hoffman, 1982). Overall, the occur-
rence frequencies in darkness conditions are higher than in
sunlit conditions.

For the high altitude bins (R>4RE), the data coverage
is enough to draw some conclusions. The occurrence fre-
quencies are highest in the midnight sector, both in sunlit
and darkness conditions. Instead, in the evening and morn-
ing sectors the occurrence frequencies are about equal, which
is not the case in the low-altitude events.

Interestingly, the middle altitude occurrence frequencies
(R=3−4RE) are smaller than the low and high altitude ones
in all cases where we have enough data to judge. Such a
judgement can be done in the midnight sector for both sun-
lit and darkness cases, as well as in the evening sector sunlit
case and the morning sector darkness case. Such a feature
tends to suggest that the low-altitude and high-altitude struc-
tures are not necessarily connected.

4.4 Kp

Kp-decomposed statistics are shown in Fig. 10. For the low-
altitude events the occurrence frequency is about two times
larger forKp>2 than forKp≤2; also, a bin at 2.75RE con-
tains many events during highKp. So the spatial length of
the low-altitude potential minimum region may increase with
increasingKp. For the high-altitude events, the occurrence
frequency increases with increasingKp; it is 3–4 times larger
for Kp>2 than forKp≤2. Again, one should notice the ex-
istence of a minimum in occurrence rates at 3–4RE radial
distance.

5 All electric fields

In the previous section we investigated how often potential
minima occur in different regions. As the main measure, we
used the effective mapped-down electric field associated with
the potential minimum, where the effective electric fieldEi

was defined as the potential minimum depth divided by the
mapped-down ionospheric half-width of the structure. To
complement this, we now consider all perpendicular electric
fields, not only those that are associated with potential min-
ima. We still use the mapped-down version of the measured
electric field to be able to easily compare different altitude
observations.
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Fig. 11. Baseline plot of altitude distribution of mapped-down per-
pendicular electric field amplitudesEi , including all fields not only
those associated with potential minima:(a) number of orbital cross-
ings in each radial bin,(b) occurrence frequency ofEi exceeding
100 mV/m,(c) occurrence frequency ofEi exceeding 500 mV/m.

5.1 Data processing

We take the measured electric field along the spacecraft tra-
jectory and interpolate it to a fixed ILAT grid which has
∼10 m resolution in the ionosphere. Each auroral crossing
corresponds to 217 data points. Using this high ILAT resolu-
tion ensures that we do not undersample the measured field,
even at high altitude. The electric field is then multiplied
by the ratio of the local satellite displacement divided by
the displacement of the satellite footpoint in the ionosphere,
to obtain the mapped–down electric fieldEi . Finally, Ei is
high-pass filtered so that ionospheric scale sizes above 60 km
are removed. The filtering is done for consistency with the
previous section results where our largest allowed size for
potential minima was 60 km. The selection of data obeys the
same rules as those described above for the potential minima,
except that one need not remove the orbits quasi-parallel to
the magnetic field.

5.2 Altitude

In Fig. 11 we show the baseline plot of the electric field al-
titude distribution, which contains all nightside MLT-sectors
and allKp values and illumination conditions. The top panel

is the number of orbital crossings. The second, third and
fourth panels are the fraction of time (the occurrence fre-
quency, where “1” means thatEi is always larger than the
given threshold) whenEi exceeds 128, 256 and 512 mV/m,
respectively. Notice that the occurrence frequencies are now
numerically much smaller than in the previous section, be-
cause in that section the occurrence frequency was defined
as the number per orbital crossings, not as a fraction of time,
as defined here. We see that largeEi fields peak at low al-
titudes, and there is a minimum at 3.75RE . At higher alti-
tudes the fields again become stronger. These trends become
clearer as the threshold is increased: at 128 mV/m threshold
the distribution is still almost flat, but at 512 mV/m thresh-
old the trends are clear. Both trends are similar to what
was observed for the potential minimum associatedEi fields
(Fig. 6). This suggests that potential minimum associated
electric fields play an important role among all electric fields
in the auroral zone. The error bars correspond to 1/

√
K rela-

tive errors, whereK is the number of different orbital cross-
ings having electric fields larger than the threshold. This cor-
responds to assuming that all datapoints within one crossing
are correlated, which need not be true, thus the error bars
displayed should be considered as upper limits of the error.

5.3 Solar illumination

The sunlit/darkness decomposed statistics are shown in
Fig. 12. We see that at low altitude the occurrence frequen-
cies are about two times higher (at 512 mV/m) in darkness
than in sunlit conditions. At high altitude there is not so
much difference. A radial shift of about one bin (0.5RE)
can be seen in the low-altitude electric fields between sun-
lit and darkness. Again, the occurrence rates of all electric
fields have surprisingly similar profiles as those of the effec-
tive electric fields related to potential minima in Fig. 8.

5.4 MLT

In Fig. 13 we decompose theEi statistics in three MLT sec-
tors, as well as sunlit and darkness conditions. The high-
altitude fields that occur in the baseline plot (Fig. 11) appear
to come mainly from the midnight MLT sector. In all those
MLT/illumination combination plots where we have enough
orbital coverage to make a judgement (evening sunlit, mid-
night sunlit, midnight darkness and morning darkness), there
is a minimum in the occurrence frequency of strong mapped-
down electric fields aroundR=3.5RE . Overall, the occur-
rence frequencies are largest in midnight and smallest in
morning. A more detailed look reveals that interestingly, at
low altitude the large electric fields are more common in the
evening sector than in the morning sector, whereas at high al-
titude they are equally common in the evening and morning
sectors.

5.5 Kp

A comparison of low and highKp values is shown in Fig. 14.
The occurrence frequencies of low-altitude electric fields are
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Fig. 12. Same as Fig. 11, but decomposed into sunlit ionospheric footpoint conditions (left) and darkness conditions (right).

about two times larger for highKp than for lowKp. For
high-altitude electric fields, the transition from low to high
Kp brings about an even larger (about threefold) increase in
occurrence frequency, which is similar to the electric fields
in the potential minima.

5.6 Scale size

In Fig. 15 we show the midnight darkness sector statistics
for the effective electric field as a function of the mapped-
down scale size (vertical axis). The scale size information
is obtained by applying a running average with successively
increasing window size and finding at each smoothing level
how often the coarse-grained electric field exceeds the given
threshold. Superimposed to the plots we also display two
curves that correspond to the sampling rate of the instrument
(20 samples per s in normal mode) and the spin frequency.
The spin line has no significance, except that some spin con-
tamination might be expected close to it or its harmonic mul-
tiples, which we do not see here; however we propose that
Fig. 15 shows three categories of electric fields: (1) back-
ground electric fields that map along field lines, (2) electric
fields of the arc-associated potential structures and (3) other
electric fields whose spatio-temporal nature is uncertain. We
propose that these categories manifest themselves in the fol-
lowing way in Fig. 15. Background electric fields dominate
the top panel, as is natural, since fields of∼100 mV/m now

and then occur in the ionosphere and they vary slowly (i.e.
above spin resolution). Arc-associated potential structure
electric fields are mainly seen as an island in the 2–2.5RE

radial bin and above∼1 km scale size. They are present in
all panels, but one can distinguish them from the background
fields most easily in the middle and bottom panels. Every-
thing else seen in the plots is in the third category. At least
part of these “other” electric fields are almost certainly asso-
ciated with waves. Among the “other” electric fields are the
high-altitude midnight sector fields mentioned several times
earlier in this paper. They tend to peak, for example in 4–
5RE bins in the bottom panel.

5.7 Orbital coverage

We have identified two clear populations of large electric
fields at∼2RE and 4–5RE . We have considered possible
nongeophysical explanations and found two candidates that
could cause the observed middle-altitude minimum in the oc-
currence frequency. However, as we show below, they are not
consistent with our data:

(1) The minimum could be caused by the satellite pass-
ing through the altitude bin mostly in unfavourable ILAT.
To check this, we plot in Fig. 16 the orbital coverage of
Polar as a function of ILAT separately for all MLT sectors
and for three radial bins (2–3RE , 3–4RE and 4–5RE , re-
spectively). Only those passages satisfying the trajectory
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Fig. 13. Same as Fig. 11, but decomposed into different MLT sectors (columns), as well as sunlit (top) and darkness (bottom) conditions.

perpendicularity requirements listed in Sect. 3.2 are included
in Fig. 16. The orbital coverage decreases as a function of
ILAT at all altitude bins and in all MLT sectors in a rather
uniform way. No anomalously small coverage exists in the
3–4RE radial bin in the most probable auroral oval latitudes
as compared to the surrounding radial bins. The orbital cov-
erage in Fig. 16 is plotted as the number of times that each
0.5

◦

ILAT bin is covered.

(2) The minimum could be caused by unfavourable solar
illumination, MLT, Kp or solar cycle phase during the times
the satellite probed theR=3.75 region. These factors can
be ruled out because the minimum is seen in all MLT,Kp

and season plots separately, and also because data at this
altitude were gathered during many years. Most data for

3.75RE come from 1999, which is a solar maximum year,
thus one would expect an even higher occurrence frequency
there becauseKp is, on the average, higher. The fact that
Kp is higher can be seen for example by comparing the sec-
ond panels (the orbital coverages) of Fig. 10 at theR=3.75
bin. Furthermore, the minimum is found at slightly different
altitude for differentKp, which speaks in favour of a geo-
physical effect.

6 Summary

To find at which altitude auroral potential structures close,
we have for the first time studied auroral electric fields in the
wide radial distance range 1.5–6RE using a large statistical



P. Janhunen et al.: Auroral potential structures 1247

0

100

200

300

400

500

600

O
rb

. c
ov

er
ag

e

0

0.01

0.02

0.03

O
cc

. f
re

q.
 >

12
8 

m
V

/m

0

0.005

0.01

O
cc

. f
re

q.
 >

25
6 

m
V

/m

2 3 4 5 6 R/R_E

0

0.001

0.002

0.003

0.004

O
cc

. f
re

q.
 >

51
2 

m
V

/m

0

100

200

300

400

500

600

O
rb

. c
ov

er
ag

e

0

0.01

0.02

0.03

O
cc

. f
re

q.
 >

12
8 

m
V

/m

0

0.005

0.01

O
cc

. f
re

q.
 >

25
6 

m
V

/m

2 3 4 5 6 R/R_E

0

0.001

0.002

0.003

0.004
O

cc
. f

re
q.

 >
51

2 
m

V
/m

Fig. 14. Same as Fig. 11, but decomposed into smallKp (Kp≤2, left) and largeKp (Kp>2, right).

database of the Polar satellite covering five years. From the
analysis we conclude that there are two separate classes of
electric field structures that are seen as potential minima by
a satellite traversing them. The first class is the low-altitude
potential minima which are associated with inverted-V elec-
tron spectra, auroral cavities and optical discrete arcs. These
low-altitude potential minima are most often seen in the mid-
night and evening MLT sectors, and their altitude moves
upward by∼0.5−1RE when the ionospheric footpoint be-
comes Sun-illuminated. The strongest structures (in terms
of their effective mapped-down ionospheric fieldsEi) reside
at the lowest altitudes, and the structures are about twice as
common forKp>2 than forKp≤2.

Another class of electric field structures resides at high al-
titude (R>4RE) in the midnight MLT sector. To some ex-
tent they also occur in the evening sector. This class of elec-
tric field structures is also a new finding of this paper, and
their nature is still unknown to us. Since they occur predom-
inantly in the midnight MLT sector and react toKp more
strongly than the low-altitude fields, they are probably super-
posed substorm-related processes. They need not necessarily
be quasi-static potential well structures in the same sense as
the low-altitude ones, but could also correspond to tempo-
rally evolving structures (potential or inductive). Since the
satellite ILAT speed is low at high altitudes, structures which
oscillate in the north-south direction at a sufficiently rapid

pace can encounter the satellite multiple times which may
partly be the explanation for their relatively high occurrence
frequency.

Equally interesting as the existence of the two classes of
electric field structures is the relative rarity of the structures
in middle altitudes (R=3−4RE). In principle, concerning
the potential structure closure question, two interpretations
are possible:

1. The low-altitude potential structures do not extend be-
yond middle altitudes, which necessitates the existence
of downward parallel electric fields in the intermedi-
ate region (Janhunen et al., 1999; Janhunen and Ols-
son, 2000, 2001, 2002; Hallinan and Stenbaek-Nielsen,
2001);

2. The low-altitude narrow structures widen before reach-
ing higher altitudes so that the effective electric fields
associated with them are reduced (Mozer and Hull,
2001).

The first possibility is called the Cooperative Model (for
a recent review, see Olsson and Janhunen, 2003) and the lat-
ter possibility is called the potential finger model. In nei-
ther model can the structures above 4RE be related to the
electrostatic potential structures of the auroral region. Fig-
ure 17 shows schematically the closed potential structure in
the Cooperative Model for quiet arcs (top) and superposed
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Fig. 15. Occurrence frequency of mapped-down effective elec-
tric field exceeding threshold 128 mV/m (top), 256 mV/m (second
panel) and 512 mV/m (bottom), as a function of radial distance
and mapped-down ionospheric scale size. Curves corresponding to
satellite spin frequency 1/6 Hz and normal 20 samples per second
are superposed. Data below the 20 Hz curve do not carry physical
information and are thus shown as white.

with a substorm-time high-altitude electric field structure in
the midnight MLT sector (bottom). The nature of the high-
altitude fields is an open question. They could be electric
fields of Alfvén waves or they could be quasi-electrostatic
structures created at that altitude, for example by a Landau
resonance between Alfvén waves and electrons.

To open up a new viewpoint to the data we also investi-
gated the altitude statistics of all electric fields, not only those
associated with potential minima. The results are similar to
the potential structure results in all important ways. This sug-
gests that the statistical results presented in this paper are not
caused by problems in the minimum finding algorithm and
that electric fields associated with potential structures are the
most important class of electric fields found on auroral field
lines.

A recent study of auroral density depletions shows that the
depletions are concentrated mostly at low altitudes, however,
with another island of high-altitude depletions appearing in
the midnight MLT sector (Janhunen et al., 2002). This al-
titude pattern is very similar to the potential structure pat-
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Fig. 16. Orbital coverage of Polar sectors satisfying our criteria of
enough perpendicular trajectory in three radial distance ranges and
in the three nightside MLT sectors.

tern found in the present paper. Also, it has been shown that
the occurrence frequency of upgoing ion beams has a dip
at 3.5–4RE radial distance (Janhunen et al., 2003). Taken
together, these results are consistent with the idea that the
negative low-altitude potential structures correspond to den-
sity depletions. The working of the concept has also been
demonstrated with a hybrid simulation (Janhunen and Ols-
son, 2002).
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Fig. 17. Schematic figure containing the potential structure in the
Cooperative Model for stable arcs (top), the same with a superposed
high-altitude substorm-time electric field structure in the midnight
MLT sector (bottom).
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