Elektrodynamics, spring 2003

Exercise 1 (Thu 30.1., Fri 31.1.)

1. Prove the following useful vector identities:

$$
\begin{gathered}
\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
\nabla \cdot(\mathbf{A} \times \mathbf{B})=(\nabla \times \mathbf{A}) \cdot \mathbf{B}-(\nabla \times \mathbf{B}) \cdot \mathbf{A} \\
\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}
\end{gathered}
$$

Tip: It is worth learning to use the permutation symbol (Levi-Civita symbol). For example, $(\mathbf{A} \times \mathbf{B})_{i}=\epsilon_{i j k} A_{j} B_{k}$, where summation goes through indices appearing twice. An especially useful result is $\epsilon_{i j k} \epsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}$. Note also that using the short notation, $\mathbf{A} \cdot \mathbf{B}=A_{i} B_{i}$.
2. Let

$$
\mathbf{A}(\mathbf{r})=\int_{R^{3}} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime}
$$

On which physically reasonable mathematical conditions it holds that

$$
\nabla \cdot \mathbf{A}(\mathbf{r})=\int_{R^{3}} \frac{\nabla^{\prime} \cdot \mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime}
$$

3. About half of the mass of a human body consists of protons. Let us remove one percent of electrons of a human being. Set two such persons of 70 kg at a distance of one meter from each other.
a) How large is the repulsion between them?
b) Make the result understandable in some illustrative way.
4. A sphere of radius R is uniformly charged so that the total charge is Q. Inside this sphere there is a hollow space, which is also a sphere of radius a and whose centre is at distance d from the centre of the larger sphere $(R \geq d+a)$. Calculate the electric field everywhere.
5. A hollow conducting sphere of radius one meter is uniformly charged until the electric field at the surface is $100 \mathrm{kV} / \mathrm{m}$. Voltage between the surface and the centre is measured by a voltmeter whose sensitivity is $1 \mu \mathrm{~V}$. The result is zero volts. What limits are obtained for the parameter $\lambda(|\lambda| \ll 1)$ if Coulomb's law were as $r^{-2-\lambda}$, and the superposition principle is assumed to be valid?

Return answers until Tuesday 28.1. at 14 o'clock (electrodynamics box on the 2nd floor). Exercise times: Thu 8-10 (E206), Thu 14-16 (E206), Fri 10-12 (D114). The teaching language is Finnish, but you may present your contribution in English.

