Electrodynamics, spring 2003

Exercise 6 (Thu 6.3., Fri 7.3.)

1. A permanent magnet has a shape of a circular cylinder (length L, radius R). Its axis is along the z-axis so that the origin is at the centre of the magnet. The magnet has a uniform magnetisation $M_{0} \mathbf{e}_{z}$. Calculate the z-component of the magnetic field \mathbf{B} along the z-axis both inside and outside of the magnet.
2. The space is divided into two uniform regions by the plane $z=0: z>0$ (permeability μ_{0}) and $z<0$ (permeability μ). Above the plane at the height h there is an infinitely long line current whose amplitude is I. Calculate the magnetic field everywhere. Tip: method of images.
3. A classic electron moves along a circular path (radius $5,3 \cdot 10^{-11} \mathrm{~m}$) due to the electrostatic interaction by a proton.
a) How large is the corresponding current?
b) How large is the torque on this "current loop" in a magnetic field of $2,0 \mathrm{~T}$?
c) How large is the magnetic field at the proton due to the circular motion of the electron?
4. Faraday's homopolar generator is a metal disk (radius a) rotating around the axis through the centre of the disk so that the disk is perpendicular to a uniform magnetic field \mathbf{B}_{0}. The angular velocity is a constant ω. A current circuit is made by connecting one end of a wire to the axis and connecting another end to the edge of the disk with a smooth contact (and there is some useful machine in between). The total resistance of this circuit is R. Calculate the current flowing in the circuit.
5. A conducting rod moves with a constant velocity \mathbf{v} along a circuit as shown in the figure. There is a uniform magnetic field \mathbf{B} transverse to the plane of the circuit. Calculate currents in this system when the rod is at $x=L$. All conductors have the same resistance r per unit length. Inductance can be ignored.

Return answers until Tuesday 4.3. at 12 o'clock.

