Electrodynamics, spring 2008

Exercise 2 (31.1., 1.2.; Friday group in English)

1. There are no charges inside a sphere of radius R. Show that

$$
\int_{r<R} \mathbf{E} d V=\frac{4 \pi R^{3}}{3} \mathbf{E}(0)
$$

where $\mathbf{E}(0)$ is the electric field at the centre of the sphere. A possibly useful result:

$$
\int_{4 \pi} \frac{d \Omega^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{4 \pi}{\max \left(r, r^{\prime}\right)}
$$

2. There is an electric dipole \mathbf{p} at the centre of a sphere. What kind of charge distribution should be placed at the surface of the sphere so that there is no field outside of the sphere?
3. A box $0 \leq x \leq a, 0 \leq y \leq b$ is very long into the z-direction.
a) Solve the potential $\varphi(x, y)$ inside the box with the boundary conditions $\varphi(y=$ b) $=V=$ constant and $\varphi=0$ at other edges.
b) Based on this result, how would you easily handle a situation in which all edges of the box are held at different constant potentials?
4. A conducting cylinder of radius a is kept at potential V_{a} and a surrounding cylinder of radius b is at potential V_{b}. The cylinders have a common axis. Calculate the electric field between the cylinders as well as the surface charge densities.
5. An infinitely long grounded conducting cylinder has a radius of R. Outside of the cylinder at the distance of d from its axis, there is an infinitely long line charge parallel to the cylinder. The line charge density is λ. Determine the potential outside of the cylinder. Tip: method of images.
6. Extra problem (one extra point available): How can you separate pepper from a mixture of salt and pepper by using a plastic spoon and a piece of wool?

Return the answers until Tuesday 29.1. 12 o'clock.

