Electrodynamics, spring 2008

Harjoitus 4 (14.2., 15.2.; Friday group in English)

1. There are two point charges q_{1} and q_{2} at the distance d from each other. The energy density of the total field is proportional to $E(\mathbf{r})^{2}=E_{1}(\mathbf{r})^{2}+E_{2}(\mathbf{r})^{2}+2 \mathbf{E}_{1}(\mathbf{r}) \cdot \mathbf{E}_{2}(\mathbf{r})$. The contribution of E_{1}^{2} and E_{2}^{2} diverges when integrated over the whole space (this problem can be handled in QED). Show that the interaction term $2 \mathbf{E}_{1} \cdot \mathbf{E}_{2}$ provides the desired result. Tip: $\mathbf{E}=-\nabla \varphi$ and suitable integration formulas.
2. Determine the pressure on a uniformly charged spherical shell. Tip: the pressure on a surface element $d a$ is equal to the normal component of the force on the element divided by its area.
3. A lightning stroke hits the ground whose conductivity is $10^{-3} \Omega^{-1} m^{-1}$. Assuming that the current is uniformly distributed in the half-space, determine the voltage between two points at a distance of 1 m from each other, when the distance from the stroke is a) 100 m b$) 1 \mathrm{~km}$. Assume a direct current whose amplitude is 10 kA (a typical value in Finland, although even more than 100 kA is possible).
4. The inner and outer radii of a hollow spherical conductor are R_{1} and R_{2}, respectively. Determine the resistance between the inner and outer surfaces, when the conductivity is σ.
5. Show by a direct calculation that the magnetic flux density expressed by Biot and Savart law (Eq. 5.30 in lectures) is divergence-free.
6. Extra problem (one point): The wife of a "lighthead" asked from Kirsti (the omniscient wizard of Helsingin Sanomat, the largest Finnish newspaper) the following question: "Does a 40 W glow lamp consume more energy than a 20 W lamp? If I changed the four 40 W lamps in my chandelier to smaller ones would I notice that in my electricity bill? What if I just removed one lamp and used three of them? My husband claims that the consumption would be equal for both 4 and 3 lamps, because in the case of 3 lamps the rest would have to do the work of the missing lamp too. So the 3 lamps would burn out faster." Advise the wife and enlighten her husband.

Return the answers until Tuesday 12.2. 12 o'clock.

